Issue 2 (208), article 4


Cybernetics and Computer Engineering, 2022, 2(208)

ARALOVA N.I.1, DSc (Engineering), Senior Researcher, 
Senior Researcher of Optimization of Controlled Processes Department,
ORCID 0000-0002-7246-2736,

BELOSHITSKIY P.V.2, DSc (Medicine)
Professor of Biological Faculty
ORCID 0000-0002-6058-3602

ORCID: 0000-0002-4283-6514

ARALOVA A.A.1 PhD (Mathematics)
Researcher of the Department of Methods for Discrete Optimization,
Mathematical Modelling and Analyses of Complex Systems
ORCID 0000-0001-7282-2036

1Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine,
40, Acad.Glushkov av., 03187, Kyiv, Ukraine

2Pavlo Tychyna Uman State Pedagogical University,
2, Sadova str, 20300, Uman, Chercassy distr., Ukraine

3High Altitude Pulmonary and Pathology Institute
HAPPI-IPPA La Paz, Bolivia


Introduction. Currently, as a result of ever-increasing intensity of human activity, unfavorable environment, the need to perform work in various extreme disturbances, significantly increase physical, mental and emotional stress on the human body, leading to pronounced changes in functional systems. Therefore, the task of studying the adaptation of the human body to work in extreme environments is urgent. The work of climbers is a fairly adequate model for studying the combined effects of hypobaric hypoxia and exercise hypoxia. The need to process large amounts of information necessitates the use of modern computer technology that allows the training process in the training of climbers, which would repeatedly, almost in real time to speed up the processing of survey data and accumulate for further use in determining current status and forecasting regulatory reactions of the body to external and internal disturbances

The purpose of the paper is to develop an automated information system of functional diagnostics using the model of regulation of oxygen regimes of the body and its practical application in the study of highly qualified climbers

Methods. Programming methods for creating an automated information system and methods of functional diagnostics.

Results. On the basis of the model of regulation of oxygen regimes of the organism the automated information system for functional diagnostics of the persons who are in the conditions of extreme disturbances is constructed. The results of approbation of the offered software for research of group of highly skilled climbers are resulted.

Conclusions. The proposed software allows you to use a model of oxygen regimes of the body in real time, i.e. repeatedly accelerates the processing of data obtained during the survey of athletes, allows centralized collection of information for its pre-processing, storage and collective use, allows you to compare the basic parameters characterizing the functional respiratory system during natural sports activities and obtained during ergometric loading,

Key words: methods of functional diagnostics, highly qualified climbers, mathematical model of regulation of oxygen regimes of the organism, human adaptation to work in extreme environment, hypoxibritic hypoxia

Download full text!


1. Sirotinin N.N. Living on the heights and ailments on the heels. Kiev: Edition of the Academy of Sciences of the URS,1939, 222 p. (In Ukrainian)

2. Biloshytsky P.V. Hypoxia. Encyclopedia of Successful Ukraine Kyiv: Institute of Encyclopedic Research NAS of Ukraine. 2006, 5, pp. 625-626. (In Ukrainian)

3. Beloshitskiy P.V. Study of the problems of sports medicine at the Elbrus medical and biological station. Sports medicine. 2008, 1, pp. 83-94. (In Russian)

4. Kolchinskaya A.Z. On the classification of hypoxic conditions. Patol. physiology and experimental therapy. 1981, no. 4, pp. 3-10. (In Russian)

5. Beloshitskiy P.V. Chronicle of biomedical research in the Elbrus region (1929-2006). Kyiv. 2014. Ukrainian Academy of Sciences. 550 p. (In Russian)

6. Seredenko M.M., Nazarenko A.I, Rozova. K.V. The capital of hypoxia. Kyiv, 2002. Print line. 24 p (In Ukrainian)

7. First world congress of high altitude medicine and physiology.La Paz-Bolivia. 1994, p.

8. Second world congress of high altitude medicine and physiology. Acta Andina. 1996, Cusco-Peru.

9. Materials to the II Congress of Pathophysiologists of Ukraine, dedicated to the 100th anniversary of the day of the Birth Day of Ac. M.M. Syrotinin. Physiol. journal. v.42,
no 3-4. (In Ukrainian)

10. The 3rd World Congress on Mountain Medicine and High Altitude Physiology and the 18th Japanese Symposium on Mountain Medicine, May 20th-24th. 1998. Matsumoto, Japan.

11. IV World Congress on Mountain Medicine and High Altitude Physiology. High Altitude medicine and biology. 2000, 1, N3, Arica, Chile.

12. V World Congress on Mountain Medicine and High Altitude Physiology. High Altitude medicine and biology. 2002, 3, N1, Barcelona, Spain.

13. Milledge J.S. VI World Congress on Mountain Medicine & High Altitude Physiology, Xining, Qinghai, and Lhasa, Tibet, August 12-18, 2004. High Alt Med Biol. 2004 Winter;5(4):457-64. doi: 10.1089/ham.2004.5.457.

14. VI World Congress on Mountain Medicine and High Altitude Physiology, Xining, Qinghai, and Lhasa, Tibet, August 12-18, 2004. High Altitude medicine and biology. 2004. 5, N2

15. Anholm J.D. The VIIIth World Congress of High Altitude Medicine and Physiology, Arequipa, Peru, August 8-12, 2010. High Alt Med Biol. 2010 Winter;11(4):381-4.
doi: 10.1089/ham.2010.1061.

16. West J.B. World Congresses of Mountain Medicine and High Altitude Physiology, 1994-2002 High Altitude Medicine & Biology. V. 3, No. 1. Published Online: 6 Jul 2004

17. 7th Chronic Hypoxia Symposium, Feb 23 – Mar 2. 2019 La Paz-Bolivia. Dedicated to the Late Danish Prof. PoulErikPaulev p. 24. URL: symposium7/Abstracts7CHS.pdf

18. Catron T.F., Powell F.L., West J.B. A strategy for determining arterial blood gases on the summit of Mt. Everest. BMC Physiol. 2006 Mar 8;6:3. doi: 10.1186/1472-6793-6-3.

19. West J.B., Hackett P.H., Maret K.H. Milledge J.S., Peters R.M. Jr., Pizzo C.J., Winslow R.M. Pulmonary gas exchange on the summit of Mount Everest. J Appl Physiol Respir Environ Exerc Physiol. 1983 Sep;55(3):678-87. doi: 10.1152/jappl.1983.55.3.678.

20. Malconian M.K., Rock P.B., Reeves J.T., Cymerman A., Houston C.S. Operation Everest II: gas tensions in expired air and arterial blood at extreme altitude. Aviat Space Environ Med. 1993 Jan;64(1):37-42.

21. West J.B. Lactate during exercise at extreme altitude. Fed Proc. 1986 Dec;45(13):2953-7.

22. West J.B. Tolerance to severe hypoxia: lessons from Mt. Everest. Acta Anaesthesiol Scand Suppl. 1990;94:18-23. doi: 10.1111/j.1399-6576.1990.tb03216.x.

23. West J.B. Acclimatization and tolerance to extreme altitude. J Wilderness Med. 1993 Feb;4(1):17-26. doi: 10.1580/0953-9859-4.1.17.

24. West J.B. Limiting factors for exercise at extreme altitudes. Clin Physiol. 1990 May;10(3):265-72. doi: 10.1111/j.1475-097x.1990.tb00095.x.

25. West J.B. Climbing Mt. Everest without oxygen: an analysis of maximal exercise during extreme hypoxia. Respir Physiol. 1983 Jun;52(3):265-79. doi: 10.1016/0034-5687(83)90085-3.

26. Wagner P.D., Wagner H.E., Groves B.M., Cymerman A., Houston C.S. Hemoglobin P(50) during a simulated ascent of Mt. Everest, Operation Everest II. High Alt Med Biol. 2007 Spring;8(1):32-42. doi: 10.1089/ham.2006.1049.

27. Wagner P.D. Operation Everest II. High Alt Med Biol. 2010 Summer;11(2):111-9. doi: 10.1089/ham.2009.1084.

28. Samaja M., Mariani C., Prestini A., Cerretelli P. Acid-base balance and O2 transport at high altitude. Acta Physiol Scand. 1997 Mar;159(3):249-56. doi: 10.1046/j.1365-201X.1997.574342000.x.

29. Hoiland R.L., Howe C.A., Coombs G.B., Ainslie P.N. Ventilatory and cerebrovascular regulation and integration at high-altitude. Clin Auton Res. 2018 Aug;28(4):423-435. doi: 10.1007/s10286-018-0522-2.

30. Bärtsch P., Saltin B. General introduction to altitude adaptation and mountain sickness. Scand J Med Sci Sports. 2008 Aug;18 Suppl 1:1-10. doi: 10.1111/j.1600-0838.2008.00827.x.

31. Grocott M.P., Martin D.S., Levett D.Z., McMorrow R., Windsor J., Montgomery H.E.; Caudwell Xtreme Everest Research Group. Arterial blood gases and oxygen content in climbers on Mount Everest. N Engl J Med. 2009 Jan 8;360(2):140-9. doi: 10.1056/NEJMoa0801581.

32. Zubieta-Calleja G.R., Paulev P.E., Zubieta-Calleja L., Zubieta-Castillo G. Altitude adaptation through hematocrit changes. J Physiol Pharmacol. 2007 Nov;58 Suppl 5(Pt 2):811-8. PMID: 18204195.

33. Zubieta-Calleja G.R., Ardaya G., Zubieta N., Paulev P.E., Zubieta-Castillo G. Tolerance to Hypoxia [Internet]. Vol. 59, J Fisiol. 2013. p. 65-71. URL:

34. Paulev P.E., Zubieta-Calleja G.R. Essentials in the diagnosis of acid-base disorders and their high altitude application. J Physiol Pharmacol. 2005 Sep; 56 Suppl 4:155-70. PMID: 16204789.

35. Zubieta-Calleja G., Zubieta-DeUrioste N. The Oxygen Transport Triad in High-Altitude Pulmonary Edema: A Perspective from the High Andes. Int J Environ Res Public Health. 2021 Jul 17;18(14):7619. doi: 10.3390/ijerph18147619. PMID: 34300070; PMCID: PMC8305285.

36. Zubieta-Castillo G., Zubieta-Calleja G.R., Zubieta-Calleja L., Zubieta-Calleja Nancy. Adaptation to life at the altitude of the summit of Everest. Physiol. Journal, 1994.

37. Schoene R.B. Limits of human lung function at high altitude. J Exp Biol. 2001 Sep;204(Pt 18):3121-7.

38. Schoene R.B. Limits of respiration at high altitude. Clin Chest Med. 2005 Sep;26(3):405-14, vi. doi: 10.1016/j.ccm.2005.06.015.

39. Hawkins M.N. Raven P.B., Snell P.G., Stray-Gundersen J., Levine B.D. Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Med Sci Sports Exerc. 2007 Jan;39(1):103-7. doi: 10.1249/01.mss.0000241641.75101.64.

40. Noakes T.D. Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity: comment. Med Sci Sports Exerc. 2008 Mar;40(3):585; author reply 586.
doi: 10.1249/MSS.0b013e3181617350.

41. Bassett D.R. Jr., Howley E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000 Jan;32(1):70-84. doi: 10.1097/00005768-200001000-00012

42. Feitosa W.G., Barbosa T.M., Correia R. De A., Castro F.A. De S. Maximal oxygen uptake, total metabolic energy expenditure, and energy cost in swimmers with physical disabilities. International Journal of Performance Analysis in Sport Volume 19, 2019
Issue 4, pp. 503-516

43. Kang M.-Y., Sapoval B. Prediction of maximal oxygen uptake at high altitude. European Respiratory Journal 2016 48: PA1583; DOI: 10.1183/13993003.congress-2016.PA1583

44. Bernardi L., Schneider A., Pomidori. L., Paolucci E., Cogo A. Hypoxic ventilatory response in successful extreme altitude climbers. European Respiratory Journal 2006 27: 165-171; DOI: 10.1183/09031936.06.00015805

45. Biloshitsky P.V., Onopchyk Yu.M., Marchenko D.I., Aralova N.I. Mathematic methods for investigation of reliability problem of organism functioning in extreme high mountain conditions Physiol. Journal, 2003, pp. 139-143 (In Ukrain)

46. Aralova A.A., Aralova N.I., Beloshitsky P.V., Onopchuk Yu.N. Automated Information System for Functional Diagnostics of Mountaineers. Sports Medicine 2008. 1: 163-169.

47. Kolchinskaya. A.Z., Monogarov V.D., Radzievsky P.A., Molchanova N.I. Complex control in mountaineering and its role in the management of the training process. Сontrol of the process of adaptation of the organism of sports-shifts of high qualification: Collection of scientific works. works / Ed. board: D.A. Polishchuk and others Kyiv.KSIPT 1992, pp.122-132 (in Russian)

48. Kolchinskaya A.Z., Monogarov V.D., Radzievsky P.A. Scientific and methodological support for the preparation of Soviet climbers for the traverse of the Kanchenjunga massif. Theory and practice of physical culture. 1991.4.10-14. (in Russian)

49. Kolchinskaya A.Z., Beloshitsky P.V., Monogarov V.D., Pivnutel R.V., Radzievsky P.A., Krasyuk A.N., Ivashkevich A.A., Borisov A.N. Physiological performance of climbers in conditions of extremely low pO2 in inhaled air. Physiological journal. 1989, 35, 2,
pp. 68-74. (in Russian)

50. Lauer N.V., Kolchinskaya A.Z. About the oxygen organism regime and its regulation. K.: Nauk.Dumka, 1966, pp. 157-200/ (In Russian)

51. Klyuchko O.M., Aralova N.I., Aralova A.A. Electronic automated work places for biological investigations Biotechnologia Acta, K, 2019, V.12, №2, pp. 5-26.

52. Aralova A.A., Aralova N.I., Kovalchuk-Khimyuk L.A., Onopchuk Yu.N., Automated information system for athletes functional diagnostics. Control systems and machines. 2008 3: 73-78. (in Russian).

53. Aralova N.I. Mathematical model of the mechanism short- and medium-functional adaptation of breath of persons work in extreme conditions high. Kibernetika i vyčislitelnaâ tehnika. 2015, 182, pp. 15-25. (in Russian).

Received 19.01.2022