Issue 1 (195), article 5


Kibern. vyčisl. teh., 2018, Issue 1 (195), pp.

Kaplin I.V.1, ophthalmologist of the Kyiv Center for Eye Therapy and Microsurgery, PhD student of the Ophthalmology Department

Kochina M.L.2, DSc. (Biology), Professor,
Head of the Medical and Biological Basics of Sports and Physical Rehabilitation Department,

Demin Yu.A.1, DSc. (Medicine), Professor,
Head of Ophthalmology Department,

Firsov A.G.3, PhD (Technics), Chief Designer

1 Kharkiv Medical Academy of Postgraduate Education,
58, Amosova str., Kharkiv, Ukraine, 61000

2 Petro Mohyla Black Sea National University
10, 68-Desantniv str., Mykolaiv, Ukraine, 54000

1, Aviation str., ap.7, Kharkiv, Ukraine, 61166


Introduction. According to the World Health Organization (WHO), glaucoma accounts for 4–5% of the total ocular pathology, making it one of the most common eye diseases in the world. The first sign of the disease is a constant or periodic increase in intraocular pressure, which leads to the development of visual field defects, optic nerve atrophy, and dystrophic changes in eye tissues. Detection of glaucoma and ocular hypertension is done by measuring the intraocular pressure, which is the standard procedure for diagnosis of the condition of eyes in all patients over 40 years of age. Patients with a diagnosis of “glaucoma” should constantly measure the intraocular pressure, which is necessary to control the effectiveness of treatment, its correction and evaluation of the effectiveness of drugs.
The purpose of the article is to develop the system for assessing the intraocular pressure level using the interference pictures parameters observed on the eye cornea in the polarized light.
Results. The proposed system of two-level classification of the intraocular pressure level, which contains a pair of complementary fuzzy models, formalized in the form of logical rules and sets of numerical parameters of functions (membership and conclusion), and additional decisive rules that consist of a regression equation and a classification criterion.
Such a hybrid system adequately reflects the general communication of adjusted interference picture parameters with a measured value of intraocular pressure by classical Goldman tonometry, which allowed offering it to practical use as a basis for intraocular pressure express assessment.
Conclusion. Using the developed software module evaluation of intraocular pressure, based on the proposed concept of express assessment of intraocular pressure, integrates fuzzy models and decisive rules allowing to improve the results of glaucoma treatment at early detection of high level of intraocular pressure.

Keywords: intraocular pressure, central eye cornea thickness, interference pictures, express assessment.

Download full text!


1. Tham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121:2081-90.

2. Leske M. C. Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr. Opin. Ophthalmol. 2009. Vol. 20, N 2. P. 73-78.

3. Howard D. L., Kim M. M., Hartnett M. E. Predicting glaucoma diagnosis in an elderly sample: revisiting the established populations for epidemiologic studies of the elderly. J Natl Med Assoc .2011. Vol. 103. P. 332-341.

4. Day A.C., Baio G., Gazzard G.The prevalence of primary angle close glaucoma in European derived population: a systematic review. Br J Ophthalmol. 2012. Vol. 96. P. 1162-1167.

5. Ravi Thomas. Glaucoma a in developing countries. Indian J Ophthalmol. 2012. Vol. 60. 5. P. 446-450.

6. Rykov S.A., Vitovskaya O.P., Stepanyuk G.I. Incidence, prevalence of ophthalmopathology and eye disability in Ukraine. News of Glaucoma. 2009. No. 1. 34-35. (in Russian)

7. Povch Z.V. Contemporary regional features and dynamics of glaucoma morbidity of adult population of Ukraine, gender aspects. Health of Society. 2014.1 2. P. 36-40. (in Ukrainian)

8. Povch Z.V. Approaches to improving the glaucoma prevention taking into account the regional peculiarities of its prevalence among different age groups of the population of Ukraine. Health of Society. 2014. 1-2. P. 79. (in Ukrainian)

9. Rykov S.O. Medvedovskaya N.V., Troyanov D.P. Current state and dynamics of glaucoma incidence among adult population of Ukraine. Ukraine. The health of the Nation. 2012. 2-3. P. 119-121. (in Ukrainian)

10. Rykov S.A., Shargorodskaya I.V., I.I. bakdardin, Simchuk I.V. Diagnosis and treatment of glaucoma. Supplement to lectures; ed. S.O. Rykova. [2nd ed.]. K.: LLC “Firm ASAVA”, 2014. 72p. (in Russian)

11. Kaplin I.V., Kochina M.L., Demin Y.A., Firsov A.G. The conception of telemedicine system for express estimation of intraocular pressure’s level. Cybernetics and Computer Engineering. 2018. No 1 (191). P. 76-94. (in Ukrainian)

12. Brandt J. D., Gordon M.O., Beiser J. A. The Ocular Hypertension Treatment Study (OHTS) Group. Adjusting Intraocular Pressure for Central Corneal Thickness Does Not Improve Prediction Models for Primary Open-Angle Glaucoma .Ophthalmol. 2012. Vol. 119(3). P. 437-442.

13. Egorov E.A., Vasina M.V. The influence of the cornea thickness on the level of intraocular pressure among various groups of patients. Clinical Ophthalmology. 2006. No. 1. P. 16-19. (in Russian)

14. Eremina M.V., Erichev V.P., Yakubova L.V. The influence of the central thickness of the cornea on the level within the eye pressure is normal and with glaucoma (overview). Glaucoma. 2006. No. 4. P. 78-83. (in Russian)

15. Alekseev V. N., Litvin I. B. The influence of corneal thickness on the level of intraocular pressure and prognosis in primary open-angle glaucoma. Clinical ophthalmol. 2008. No. 4. P. 130-132. (in Russian)

16. Avetisov S.E., Petrov S.Yu., Bubnov I.A. Influence of the central cornea thickness on the results of tonometry (review of literature). Vestn. Ophthalmol. 2008. No. 5. P. 3-7. (in Russian)

17. Kochina M.L., Demin Y.A., Kaplin I.V., Kovtun N.M. Model of stress-deformation status of the eye corneaEast European Scientific Journal. 2017. 2(18). P. 61-66.

18. Shtovba S.D. Designing fuzzy systems by means of MATLAB. Horiachaia liniia – Telecom. M., 2007. 288p with pictures. (in Russian)

19. Yager R., Filev D. Essential of Fuzzy Modeling and Control. John Willey & Sons, 1994. 388 p.

20. Open source software for numerical computation. Access mode: (Last accessed: 21.06.2018.)

21. Fuzzy Logic Toolbox. Access mode: (Last accessed: 21.06.2018)

22. Fuzzy Logic Library for Microsoft .Net Access mode: (Last accessed: 21.06.2018)

Received 03.12.2018

Issue 1 (191), article 5


Kibern. vyčisl. teh., 2018, Issue 1 (191), pp.

Kaplin I.V.1, Ophthalmologist of the Kyiv Center of Therapy and Microsurgery of Eye,
Postgraduate student of department of ophthalmology
Kochina M.L.2, Dr (Biology), Professor,
Head of Department of Medical and Biological Bases of Sport
and Physical Rehabilitation
Firsov A.G.3, PhD (Engineering),
Main Designer of LLC “ASTER-IT”
1Kharkov Medical Academy of Postgraduate Education,
Аmosov st, 58, Kharkiv, 61000, Ukraine
2 Petro Mohyla Black Sea National University,
68 Marines st., 10, Mykolay, 54003, Ukraine
3 Limit Liability Company “ASTER-IT”,
Aviation st., 1, ap. 7, Kharkov, 61166, Ukraine


Introduction. One of the reasons for the unfavorable outcome of glaucoma is an incorrect evaluation of the eye hydrodynamics data obtained by measuring intraocular pressure. That is why the development of new non-invasive methods of intraocular pressure studying is an urgent task. The cornea is optically anisotropic due to the effects of direct extraocular muscles and intraocular pressure on it, as well as the structure and properties of corneal collagen. When an eye cornea is illuminated by polarized light, we can observe an interference pattern which reflects the distribution of internal stresses in it. The parameters of interference patterns depend on the level of intraocular pressure.
The purpose of the article is to develop the telemedicine system’s conception for express estimation of intraocular pressure level with the use of interference pictures that are observed on glaucoma patients’ cornea in polarized light.
Results. The method for determining the interference parameters is performed in several stages in accordance with the developed algorithm. First, after receiving a color picture of interference pattern, its brightness is normalized and converted to monochrome. At the second stage, the cornea borders are fixed by means of two mode indicators, after which the contour is automatically applied to the image. At the third stage, the isochromatic contour is labeled using an adjustable ring pointer, which allows defining the isochrome width middle and standardizing the studies. After marking out the contour of the isochrome using splines, the isochrome itself is modeled. At the fourth stage, there is an automated calculation of the pixels forming the isochrome and filling the inner part.
Conclusions. To assess the level of intraocular pressure using interference patterns, it is necessary to determine their parameters, which can be performed in a semi-automated mode. The developed method provides a resolving power of at least 0.55 mm/pixel (3 times better than the known one) and reduces the research time by 11–15 times. It is not labor-intensive and can be implemented in the central regional hospital.

Keywords: telemedical system, polarized light, interference patterns, isochromes, parametrization.

Download full text (ua)!


1 Rykov S.A., Vitovskaya O.P., Stepaniuk G.I. Morbidity, prevalence of ophthalmopathology and disability due to it in Ukraine. News of Glaucoma. 2009. No 1. P.34–35 (in Russian).

2 Vodovozov A.M., Kovylin V.V. Use of the polarization-optical method for diagnosing the state of oculomotor muscles with vertical deviation. Ophthalmological Journal. 1990. No 4. P. 201–204 (in Russian).

3 Method of intraocular pressure measurement: pat. 33640, Ukraine: IPC A 61 V 3/16, A 61 V 8/10. Nou 2007 11716; claimed 23.10.2008; published 10.07.2008 Bull. No 13. 4 p.

4 Kochina M.L., Kalimanov V.G. Methods of image processing for automation of pathology diagnosis of extraocular muscles. Applied Radioelectronics. 2008. Vol. 7, No 1. P. 93–96 (in Russian).

5 Kochina M.L., Kaplin I.V., Kovtun N.M. Results of polarized light using in the eye studying. Bulletinon the Problems of Biology and Medicine-2014. Iss. 4, vol. 1 (113). P. 139–145 (in Russian).

6 Penkov M.A., Kochina M.L. Interference method in the diagnosis of strabismus. Ophthalmological Journal. 1979. No 8. P. 497–498 (in Russian).

7 Penkov M.A., Kochina M.L Interference method in the diagnosis of strabismus. Bulletin of Ophthalmology. 1981. No 1. P. 39–41 (in Russian).

8 Penkov M.A., Kochina M.L. Application of polarized light in ophthalmology (review). Ophthalmological Journal. 1981. No 6. P. 368–372 (in Russian).

9 Penkov M.A., Tamarova R.M., Kochina M.L. Polarization method of studying the eye cornea. News of Medical Technology: a collection of articles. Moscow, 1982. Iss. 1. P. 27–30 (in Russian).

10 Zandman F. The photoelastic effect of the living eye. Experim. Mechanics. 1966. Vol. 6, No 5. P. 19–25.

11 Bour L.J. Lopez Cardozo N.J. On the birefringence of the living human eye. Vision Res. 1981. Vol. 21, No 9. P. 1413–1421.

12 Komai Y., Ushiki T. The three dimensional organization of collagen fibrils in the human cornea and sclera. Invest. Ophthalmol. Vis. Sci. 1991. Vol. 32, No 8. P. 2244–2257.

13 Stanworth A., Naylor E.J.Polarized light studies of the cornea. The isolated cornea. J. Exp. Biol. 1953.Vol. 30. P. 160–163.

14 Penkov M.A., Kochina M.L. Method of diagnosing the pathology of intraocular pressure. Ophthalmological Journal. 1981. No 8. P. 476–479 (in Russian).

15 Cogan D.C. Some ocular phenomena produced with polarized light. Arch. Ophthalmol. 1941. Vol. 25, No 3. P. 391–400.

16 Cope W.T., Wolbarsht M.L., Yamanashi B.S. The corneal polarization cross. J. Opt. Soc. Am. 1978. Vol. 68, No 8. P. 1139–1141.

17 Anderson K., El-Sheikh A., Newson T. Application of structural analysis to the mechanical behavior of the cornea. J.R. Soc. Interface. 2004. Vol. 1. P. 1–15.

18 Kochina M.L., Kalimanov V.G. Investigation and modeling of the polarization-optical properties of the eye cornea in various states of extraocular muscles. Bionics of the intelligence. 2008. No 2 (69). P. 132–137 (in Russian).

19 Shaffer R.N., Lieberman M. F., Drake M.V. Becker-Shaffer’s Diagnosis and Therapy of the Glaucomas. Mosby, 1999. 716 p. No 1. P. 34–35.

20 Rao H.L., Senthil S., Garudadri C.S. Contralateral intraocular pressure lowering effect of prostaglandin analogues. Indian J Ophthalmol, 2014. Vol. 62. P. 575–579.

Received 30.11.2017