Issue 1 (195), article 1

DOI:https://doi.org/10.15407/kvt195.01.005

Kibern. vyčisl. teh., 2019, Issue 1 (195), pp.

Grytsenko V.I., Corresponding Member of NAS of Ukraine,
Director of International Research and Training
Center for Information Technologies and Systems
of the National Academy of Sciences of Ukraine
and Ministry of Education and Science of Ukraine
e-mail: vig@irtc.org.ua

Volkov A.E., Acting Head of Department,
Intelligent Control Department,
e-mail: alexvolk@ukr.net

Komar N.N., Researcher,
Intelligent Control Department,
e-mail: nickkomar08@gmail.com

Shepetukha Yu.M., PhD (Engineering)
Leading Researcher,
Intelligent Control Department,
e-mail: dep185@irtc.org

Voloshenyuk D.A., Researcher,
Intelligent Control Department,
e-mail: dep185@irtc.org

International Research and Training Center for Information Technologies
and Systems of the National Academy of Sciences of Ukraine
and Ministry of Education and Science of Ukraine,
Acad. Glushkov av., 40, Kiev, 03187, Ukraine

INTEGRAL-ADAPTIVE AUTOPILOT AS A MEANS OF INTELLECTUALIZING A MODERN UNMANNED AERIAL VEHICLE

Introduction. At present unmanned aerial vehicles (UAVs) are successfully used in various industries in performing scientific and engineering, economical, military and a number of other missions. Effectiveness of their functioning is mainly determined by an onboard suit of hardware and software of a UAV’s control system. The process of the existing autopilot systems enhancement is intended to broaden the range of UAV’s tasks without direct human involvement and introduce additional smart functions into autopilot operation.

Purpose. The aim of research is to study the modern algorithms used in autopilots of unmanned aerial vehicles and formulation of the problem of development and usage of new intellectual methods for automatic control systems.

Results. The approach considered in the article is based on the theory of high-precision remote control of dynamic objects and on the complex interaction of methods of theory of invariance, adaptive control and intellectualization of processes of UAV control.

One of the features of the proposed method of intellectual control for unmanned aerial vehicle autopilot is the procedure of transforming a multi-dimensional system into an aggregate of virtual autonomous processes, for each of which the control algorithm is easily generated by an autonomous subsystem. Coming up next is the procedure of coordination of actions of all the autonomous systems into single functioning complex. This provides an opportunity to improved precision and sustainability of control.

Conclusion. Using the method described in the article allows creating integral and adaptive autopilots to perform complicated spatial maneuvering an unmanned aerial vehicle being based on usage of full non-linear models without simplifications and linearization.

Keywords: unmanned aerial vehicle, control system, virtual control, adaptation invariance.

Download full text!

REFERENCES

1 Fahlstrom P., Gleason T. Introduction to UAV systems. Hoboken: Wiley, 2012. 4th ed. 308 p. https://doi.org/10.1002/9781118396780

2 Moiseyev V.S. Applied theory of unmanned aerial vehicles control. Kazan: GBU Republican centre for monitoring education quality, 2013.p. 768. (in Russian).

3 Beard R.W., McLain T.W. Small Unmanned Aircraft: Theory and Practice. Princeton: Princeton Univ. Press, 2012. 320 p. https://doi.org/10.1515/9781400840601

4 Chao H., Cao Y., and Chen Y.Q. Autopilots for small unmanned aerial vehicles: a survey. International Journal of Control, Automation, and Systems, 2010, vol. 8, N 1. P. 36-44. https://doi.org/10.1007/s12555-010-0105-z

5 Feng G. A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems, 2006, vol. 14, N 5. P. 676 – 697. https://doi.org/10.1109/TFUZZ.2006.883415

6 Shilov K.Ye. Development of unmanned air vehicle automatic control system of a rotorcraft. Works of MFTI, 2014. N 4 . P. 139-152. (in Russian).

7 Calise A., Rysdyk R. Nonlinear Adaptive Flight Control Using Neural Networks. Control Systems Magazine, 1998, vol. 18, N. 6. P. 14-25. https://doi.org/10.1109/37.736008

8 Johnson E.N., Kannan S.K. Adaptive Flight Control for an Autonomous Unmanned Helicopter. AIAA Guidance, Navigation, and Control Conference and Exhibit. Monterey, California, August, 2002. https://doi.org/10.2514/6.2002-4439

9 Lopez J., Dormido R., Gomez J.P., Dormido S., Diaz J.M. Comparison of H-infinity with QFT applied to an Altitude Command Tracker for an UAV. Proc. of the European Control Conference (2 – 5th of July, 2007, Kos, Greece) Kos, Greece, 2007. P. 46-54. https://doi.org/10.23919/ECC.2007.7068482

10 Lopez J., Dormido R., Dormido S., Gomez J.P. A Robust Controller for an UAV Flight Control System. The Scientific World Journal. 2015. vol. 2015. P. 15-26. https://doi.org/10.1155/2015/403236

11 Ross T.J. Fuzzy Logic with Engineering Applications, 2nd Edition. NY: Wiley, 2004. 228 p.

12 Kumon M., Udo Y., Michihira H., Nagata M., Mizumoto I., Iwai Z. Autopilot system for kiteplane. IEEE/ASME Transactions on Mechatronics. 2006. vol. 11. N 5. P. 615-624. https://doi.org/10.1109/TMECH.2006.882994

13 Albus J.S. On intelligence and its dimensions. Technical report of the ISIS (Interdisciplinary studies of intelligent systems) group N. ISIS 94-001. University of Notre Dame, 1994. P. 11-13.

14 Antsaklis P.J. On autonomy and intelligence in control. Technical report of the ISIS (Interdisciplinary studies of intelligent systems) group N. ISIS 94-001. University of Notre Dame, 1994. P. 14-18.

15 Grytsenko V.I., Volkov O.E., Komar M.M., Bogachuk Yu.P. Intellectualization of the modern automatic control systems for unmanned aerial vehicles. Kibernetika i vycislitelnaa tehnika. 2018. N 1 (191). P. 45-59. (in Ukrainian) https://doi.org/10.15407/kvt191.01.045

16 Pavlov V.V., Pavlova S.V. Intellectual control of complex non-linear dynamic systems. Kiev: Naukova dumka. 2015. 216 p. (in Russian).

17 Kharchenko V.P., Chepizhenko V.I., Tounik A.A., Pavlova S.V. Unmanned aerial vehicles avionics. Kiev: TOV Abris-print, 2012. 464 p. (in Ukrainian).

18 Bodner V.A. Air vehicle control systems. Moscow: Mashinostroyeniye, 1973. 501 p. (in Russian).

Received 19.11.2018

Issue 186, article 5

DOI:https://doi.org/10.15407/kvt186.04.046

KVT, 2016, Issue 186, pp.46-56

UDC 681.518

NETWORK-CENTRIC CONTROL TECHNOLOGY OF DATA TRANSFER BY NETWORK COMMUNICATIONS

Melnikov S.V., Volkov A.E., Komar N.N., Voloshenyuk D.A.

International Research and Training Center for Information Technologies and Systems, Kyiv, Ukraine

dep185@irtc.org.ua , alexvolk@ukr.net , komko08@ukr.net , p-h-o-e-n-i-x@ukr.net

Introduction. The problem of increasing network performance is very relevant. In practice, the actual speed of data transmission / receiving is significantly lower than the bit rate supported by used network technology. The actual wireless network bandwidth depends on the used technology, the number of subscribers in the network, length and quality of communication channels, electromagnetic interference, weather, network equipment, protocols and many other factors.

The purpose. The project is based on applied research in the field of high-speed cycles control systems for net-centric dynamic application processes with spatially-distributed interrelated functional components. Thus it provides functional and temporal combination of internal resources of net-centric distributed control systems with objects and technological processes on the basis of shared use of dynamics models working in an accelerated time scale into a single space-time net-centric complex.

Results. To solve the problem of determining the quality of the data transfer process in order to further control and manage this process, a method which is based on software that works with any standardized computing environment was developed. This method detects and evaluates the operating parameters of the wired Internet network before, during and after transmission of the information data packets provides analytical (numerical values of time delay of packet transmission, the percentage of lost data, signal quality, transmission speed and receive speed) and graphic parameters to control information transmission routes. This paper provides the results of computer simulation which are represent the network connection quality.

Conclusion. Development a method for determining the quality of information data transmission via a wireless connection, also as a creating programs for protection against unauthorized network access — are a perspective research objectives. Results of simulations confirm the appropriateness of using the given method of data transfer control in the terrestrial wired data transmission systems and the need to develop such technology for wireless connection.

Keywords: network-centric; control technology; communication; computer modeling; virtual model.

Download full text!

Reference

  1. A.A. Mizin Transmission of information via circuit-switched communications networks. M.: Communications, 1977, 328 p.
  2. S.V. Pavlova, Y.P. Bogachuk, S.V. Melnikov Simulation technology of distributed network of aircraft control. Kibernetika i vyčislitelʹnaâ tehnika, 2011, Vol. 163, pp. 45–53.
  3. Method of control of the route and determine the quality of the transfer of information data through a wired Internet network. Patent of Ukraine №04108, IPC (2013) G06N 7/00, stated 15/05/2014, Published 07/16/2014.
  4. V.P. Kharchenko, S.M. Kredentsar Networks and databases. NAU, Kiev, 2013, 328 p.
  5. 2013-2028 Global Air Navigation Plan. The capacity and effectiveness. International Civil Aviation Organization ICAO. Montreal, Canada, 2013, Vol. 4, 128 p.
  6. S.M. Pauk Aeronautical Telecommunication Networks. M.: Transport, 1986, 271 p.

Received 28.11.2016

ISSUE 180, article 5

DOI:https://doi.org/10.15407/kvt180.02.045

Kibern. vyčisl. teh., 2015, Issue 179, pp 45-65.

Pavlov Vadim V., Dr (Engineering), Prof., Head of the Department of Intellectual Control of International Research and Training Center for Information Technologies and Systems of National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, av. Acad. Glushkova, 40, Kiev, 03187, Ukraine, e-mail: dep185@irtc.org.ua

Volkov Aleksandr E., PG (Postgraduate) of the Department of Intellectual Control of International Research and Training Center for Information Technologies and Systems of National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, av. Acad. Glushkova, 40, Kiev, 03187, Ukraine, e-mail: alexvolk@ukr.net

Voloshenyuk Dmitrii A., PG (Postgraduate) of the Department of Intellectual Control of International Research and Training Center for Information Technologies and Systems of National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, av. Acad. Glushkova, 40, Kiev, 03187, Ukraine, e-mail: P-h-o-e-n-i-x@ukr.net

INVARIANT NET-CENTRIC CONTROL SYSTEM FOR CONFLICT AVOIDANCE OF AIRCRAFTS IN THE LANDING PHASE

Introduction. The question of the need to create a control system of conflict situations between the aircrafts in the landing phase is discusses.

The purpose of this research is to create a method and system of conflict resolution between the aircrafts on the route of flight, takeoff and landing phases with the condition to provide a high and guaranteed level of flight safety. The approach considered in the article will be based on the principles of using the network-centric technologies and the theory of invariance.

Results. The expected result of this work is the creation of a new universal control system of conflict situations between the aircrafts based on network-centric technologies and principles of the theory of invariance, which will meet all the requirements of modern air traffic management (ATM) to provide a guaranteed level of safety.

Conclusion. It is shown that a new approach to the problem of creating a control system of conflict situations between the aircrafts based on research in the field of differential games and the theory of invariance is effective.

Keywords: net-centric system, flight safety, invariance, conflict situations, differential games, free flight.

Download full text (ru)!

References

  1. Eurocontrol. Airspace Strategy for the ECAC States. ІСАО: 2001, 91 p. (in Russian).
  2. Harchenko V.P., Argunov G.F, Zakora S.A. et al. The risks of collision and the flight level of aircrafts. Кiev: NAU, 2011, 326 p. (in Russian).
  3. Zakora S.A. Classification of сonflict resolution modeling methods for free flight. Bulletin of the National Aviation University, 2005, no. 1, pp. 42–74 (in Russian).
  4. The ICAO Global Air Navigation Plan for 2013–2028 years. ІСАО: Canada, 2013.
  5. Krasovskiy N.N., Subbotin A.I. The positional differential games. Moscow: Science, 1974, 458 p. (in Russian).
  6. Krasovskiy N.N. Game Problems of counter movements. Moscow: Science, 1970, 424 p. (in Russian).
  7. Chikriy A.A. The guaranteed result in game problems of traffic control. Proceedings of the RAS Institute of Mathematics, 2010, pp. 223–232. (in Russian).
  8. Pshenichnyiy B.N., Chikriy A.A. The problem of collision avoidance in differential games. Bulletin of Computational Mathematics and Physics, 1974, no. 6, pp. 1416—1426 (in Russian).
  9. Bodner V.A. Aircraft Control System. Moscow: Mashinostroenie, 1973, 501 p. (in Russian).
  10. Ayzeks R. The differential games. Moscow: Mir, 1967, 480 p. (in Russian).
  11. Pavlov V.V. The conflicts in technical systems. Кiev: Vyscha shkola, 1982, 183 p. (in Russian).
  12. Kuntsevich V.M. Optimal control of convergence of conflicting moving objects under uncertainty. Cybernetics and systems analysis, 2002, no. 2, pp. 95–104 (in Russian).
  13. Zolotuhin V.V. Some actual problems of air traffic control. Proceedings of MFTI, 2009, no. 3, pp. 94–114 (in Russian).
  14. Harchenko V.P. Aircraft conflicts resolution by course maneuvering. Bulletin of the National Aviation University, 2011, no. 2, pp. 15–20 (in Russian).
  15. Mhitaryan A.M. Aircraft flight dynamics. Moscow: Mashinostroenie, 1978. 424 p. (in Russian).
  16. Bochkarev V.V., Kravtsov V.F., Kryizhanovskiy G.A. The concept and systems of CNS/ATM in civil aviation. Moscow: Akademkniga, 2003, 415 p. (in Russian).
  17. Pavlov V.V. The invariance and autonomy of nonlinear control systems. Кiev: Naukova Dumka, 1971, 272 p. (in Russian).

Received 23.02.2015