Issue 3 (193), article 3

DOI:https://doi.org/10.15407/kvt192.03.043

Kibern. vyčisl. teh., 2018, Issue 3 (193), pp.

Vovk M.I., PhD (Biology), Senior Researcher,
Head of Bioelectrical Control & Medical Cybernetics Department
e-mail: vovk@irtc.org.ua; imvovk3940@gmail.com

Galyan Ye.B., PhD (Engineering), Researcher,
Bioelectrical Control & Medical Cybernetics Department
e-mail: galian@irtc.org.ua

Kutsyak A.А., PhD (Engineering), Researcher,
Bioelectrical Control & Medical Cybernetics Department
e-mail: spirotech85@ukr.net

Lauta A.D., PhD (Medicine), Senior Researcher,
Bioelectrical Control & Medical Cybernetics Department
e-mail: dep140@irtc.org.ua

International Research and Training Center for Information Technologies and Systems of the National Academy of Sciences of Ukraine and of Ministry of Education and Science of Ukraine, Acad. Glushkov av. 40, Kyiv, 03187, Ukraine

FORMATION OF INDIVIDUAL COMPLEX OF CONTROL ACTIONS FOR MOTOR AND SPEECH REHABILITATION AFTER A STROKE

Introduction. At present, one of the leading directions in the healthcare system is an individual approach to treatment. Restoration of movements and oral speech after a stroke suggests the formation of an individual complex of control actions – programs, techniques for general limb movements, fine motor hand training to reduce the deficit of motor and speech functions acquired as a result of pathology.

The purpose of the article is to determine on the basis of which algorithms the informative criteria for estimating the deficit of motor and speech functions, as well as rules to be solved, an individual set of movements, programs and training schedule to restore motor and speech functions after a stroke are formed.

Results. A general and additional algorithms for the formation of an individual complex of control actions for motor and speech functions rehabilitation after a stroke have been developed. According to the algorithms, the patient is tested for general and specific contraindications to the use of muscle electrical stimulation and / or biofeedback training, quantitative assessment of motor and speech functions, muscle tonus according to new original techniques, verification of limitations to the application of programs and the duration of training. Additional algorithms are designed taking into account both hyper- and hypotonic parameters. A special feature of these algorithms is the introduction of additional restrictions, for which intervals of muscle tone values are formed.

Decision rules have been developed using the algebra of predicates, logical variables corresponding to the specified criteria and indicators. According to these rules, in each stage of rehabilitation, a set of movements and training programs recommended by priority (“Synthesis”, “Donor”, “Threshold”, “Biofeedback” according to TRENAR® technology) and their schedule are determined in binary form.

Conclusions. The considered approach to the formation of an individual complex of control actions for movement and speech rehabilitation after a stroke is the theoretical basis to synthesize the mobile information technology of digital medicine for assistance the physician in diagnosing and carrying out individual rehabilitation of motor and speech functions after a stroke.

Keywords: stroke, movement, speech, rehabilitation, quantitative assessment, algorithm, decision rules, individual control actions, programs, electrical muscle stimulation, biofeedback training.

Download full text!

REFERENCES

  1. Vovk M.I. New opportunities for movement and speech rehabilitation. Kibernetika i vyčislitelnaâ tehnika. 2016. Iss.186. P. 78–93 (in Russian).
  2. Vilensky B.S. Stroke. SPb: Foliant, 2002. 397 p. (in Russian).
  3. Vovk М.І., Kutsyak О.А., Lauta A.D., Ovcharenko М.А. Information support of researches on the dynamics of movement restoration after the stroke. Kibernetika i vyčislitelnaâ tehnika. 2017. №3 (189). P. 61–78. (in Ukrainian).
  4. Vovk M.I., Peleshok S.R., Galian E.B., Ovcharenko M.A. Method for assessing motor and sensory speech disorders. Collection of articles of the scientific and information center “Znanie” on the basis of the XI international correspondence scientific-practical conference: “The development of science in the XXI century” 3 part, Kharkov: a collection with articles (standard level, academic level). Donetsk: Scientific and Information Center “Knowledge”, 2016. pp. 70–76. (in Russian).
  5. Belova A.N., Schepetova O.N. Scales, tests and questionnaires in medical rehabilitation. Moscow: Antidor, 2002. 440 p. (in Russian).
  6. Kadykov A.S., Chernikova L.A., Shakhparonova N.V. Rehabilitation of Neurological Patients. Мoscow: MEDpress-inform, 2008. 560 p. (in Russian).

Received 4.06.2018

Issue 184, article 3

DOI:https://doi.org/10.15407/kvt184.02.025

KVT, 2016, Issue 184, pp.25-44

UDC 002.53:004.8

ORGANIZATION OF INTELLIGENT HAND MOVEMENTS CONTROL TO RESTORE SPEECH

 Vovk M.I., Galyan Ye.B.

International Research and Training Center for Information Technologies and Systems of National Academy of Sciences of Ukraine and Ministry of Education and Science of UkraineKiev, Ukraine

dep140@irtc.org.ua , galevbor@mail.ru

 

Introduction. Intelligent control is a function of organized systems, situationally adapted to provide for the operation to be constant. Main mechanisms for constant operation of biological systems are adaptation and homeostasis. We must keep in mind these mechanisms while designing biotechnical systems for control, maintenance or restoration of motor functions, damaged by pathology, as well as remember that speech movements are a type of voluntary movements.

The purpose is to develop information-structural and structural-functional models for organization of intelligent fine motor hand movements control to restore speech.

Methods. information — structural modeling, structural-functional modeling, first-order predicate logic, Unified Modeling Language.

Results. In this article we present information-structural and structural-functional models of intelligent hand movements control organization to restore speech for patients after the stroke (hemiparesis, motor aphasia, motor-sensory aphasia). The main components of the biotechnical system that organizes intelligent control are electronic devices for motor control TRENAR and PC with software-based information component. Its structural-functional model is described. The organism’s reserves activation to restore homeostasis of fine motor hand movements and speech realization is the final goal of control. Adequacy is considered as the best criterion for individual choice of control actions parameters and topology of their application. It is shown how different methods, training programs, and a set of training movements allow us to organize personally oriented situational control / training of hand movements for speech rehabilitation. The method for determining the combination of personal training options for hand and finger movements on the basis of production approach is developed. The software implementation of the method in the form of reduced expert system is described.

Conclusion. The main features of intelligent control organization are the assistance of situational goal to the final goal of control and knowledge-based control.

Keywords: intelligent control, adaptive control, homeostasis, organization, hand movements, speech restoration, modeling, computer complex, electronic devices, information component, production approach, reduced expert system.

Download full text (ru)!

References:

  1. Nefedov V.P. Homeostasis at different levels of biological systems. Novosibirsk: “Nauka”. Siberian branch, 1991, 232 p. (in Russian).
  2. Romanov S.P. Neurophysiological mechanisms of motor functions homeostasis : thesis. Doctor in Biology: specialty. 03.00.13. St. Petersburg, 1989, 443 p. (in Russian).
  3. Vovk M.I. Biological and biotechnical system as a purposeful. Control System and Computers, 2005, № 3(197), pp.16–24 (in Russian).
  4. Vovk M.I. Bioinformatic technology of movements control as the direction of biological and medical cybernetics. Kibernetika i vyčislitelʹnaâ tehnika, 2013, № 174, pp. 56–70. (in Russian).
  5. Kadukov А.S., Chernikova L.A., Shakhparonova N.V. Rehabilitation of neurological patients Chapter 16. Speech disorders. М.: “MEDpress-inform”, 2008, pp. 369–384. (in Russian).
  6. Krakauer JW Arm function after stroke: from physiology to recovery. Semin Neurol. 2005 Dec; 25(4) — p. 384-395. (in English)
  7. Vovk M.I, Galyan Ye.B., Pidoprigora E.N., e.a. Sposib likuvannya movnukh porushen’ [The way to treat speech desorders]. Patent UA, A61N 1/36, no. 111388, 2016. (in Ukrainian).
  8. Vovk M.I., Galyan Ye.B. Restoring of motor component of speech based on muscle movement control. Theoretical grounding. Kibernetika i vyčislitelʹnaâ tehnika, 2012, № 167, pp.51–60. (in Russian).
  9. Vovk M.I., Galyan Ye.B. Pesonalized Biotechnical system to restore speech. Kibernetika i vyčislitelʹnaâ tehnika, 2015, №179, pp. 5–19. (in Russian).
  10. Gritsenko V.І., Kotova A.B., Vovk M.I., Kozak L.M. Information technology in biology and medicine. Lectures: Tutorial. Part 3 Biotechnological systems theory and its application, pp.285–340, Kyiv: Nauk. Dumka, 2007, 381 p. (in Ukrainian).
  11. Koltsova М.М. Motor activity and development of the child’s brain functions. Мoscow: “Pedagogika”, 1973, 143 p. (in Russian).
  12. Varejkin Yu.P., Lastivka O.D., Lauta A.D. et.al. The formalization of medical information for automated solving the problem of treatment appointment. Medical and Biological Informatics: collection of scientific papers / the Editorial.: Amosov N.М. and etc. Kiev: VM Glushkov Institute of Cybernetics of NAS of USSR, 1967, pp. 68–71 (in Russian).
  13. Prodeus A.N. Zakhrabova E.N. Expert systems in medicine. Kyiv: “VEK+”, 1998, 320 p. (in Russian).
  14. Solodovnikov I. V., Rogozin O.V., Pashchenko O.B. Decision theory: Tutorial. Moscow: Publishing house of the MSTU. Bauman, 2006. 52 p. (in Russian).
  15. Belova А.N., Shchepetova O.N. Scales, tests and questionnaires in medical rehabilitation: a guide for physicians and researchers. Мoscow: “Antidor”, 2002, 440 p. (in Russian).
  16. Vovk M.I., Peleshok S.R., Galian Ye.B. The method of assessment of motor and sensory speech disorders. Collected papers of scientific-information center “Knowledge” based on XІ International correspondence scientific-practical conference: «The development of science in the XXI century» part 3. Kharkiv: collected papers. D, 2016, pp. 70-76. (in Russian).

Received 15.03.2016

ISSUE 179, article 1

DOI:https://doi.org/10.15407/kvt179.01.005

Kibern. vyčisl. teh., 2015, Issue 179, pp 5-19.

Vovk Maiia I.,PhD (Biology), Head of Bioelectronic Control and Medical Cybernetics Department of the International Research and Training Center for Information Technologies and Systems of National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, av. Acad. Glushkova, 40, Kiev, 03187, Ukraine, e-mail: dep140@irtc.org.ua

Galyan Yevgeniya B., Junior Researcher of Bioelectronic Control and Medical Cybernetics Department of International Research and Training Center for Information Technologies and Systems of National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, av. Acad. Glushkova, 40, Kiev, 03187, Ukraine, e-mail: galevbor@mail.ru

PERSONАLIZED BIOTECHNICAL SYSTEM TO RESTORE SPEECH

Introduction. In previous studies, we proposed a new method and technology to restore speech based on biotechnical system of hand movement control. To support operator’s choice of personalized control actions we had to include the information component in the technical subsystem.

The purpose of this research is to develop the structural and functional model of personalized biotechnical system to restore speech, to determine functionality and relationship of the system components and to describe the structure, content and functions of the information component.

Methods. We used information and structural modeling, structural and functional modeling, Unified Modeling Language (UML).

Results. In this paper we present a structural and functional model of personalized biotechnical system of hand movement control to restore speech and define structure and functionality of its components. The functional relationships between the components of the system, transformation and orderliness of information circulating within and between components are described. We paid a particular attention to the information component. It provides support for the operator activity to choice personalized parameters of rehabilitation course and gives tools for operator’s learning of technology to restore speech in online and for storage of clinical information. The structure of information component, its content and the realization in PC architecture are described. Peculiarities of algorithmic and logical implementation of operations performed by informational component are represented in the activity diagram of decision support block in UML notation. Elements of information component such as electronic library, decision support block, a database of medical records are realized using software Swish Max 4.0, Sony Vegas Pro 9.0, Visual Studio 2013.

Conclusions. Personalized biotechnical system to restore speech under consideration is an intellectual, logical thinking, teaching system due to information component that is included into its structure.

Keywords: personalized biotechnical system, speech restoring, information system, hand movement control, structural and functional model, decision support block.

Download full text (ru)!

References
1. Semenova К.А. Cerebral Palsy. Moscow: «Meditsina», 1968. 259 p. (in Russian).

2. Danilova L.А. Correction methods for speech and mental development in children with cerebral palsy. Moscow: «Meditsina», 1977. 95 p. (in Russian).

3. Mishchenko Т.S. Risk factors and clinical features of patients with different subtypes of ischemic stroke. International medical journal. 2011, vol. 17, no 3, pp. 27–32. (in Russian).

4. Vovk M.I., Galyan Ye.B., Podoprigora Ye.N. Information technology for movement control of the hand used to restore the motor component of speech. Cybernetics and Computer Engineering, 2014, no 175, pp.20–30. (in Russian).

5. Vovk M.I., Galyan Ye.B. Restoring of motor component of speech based on muscle movement control. Theoretical grounding. Cybernetics and Computer Engineering, 2012,no 167, pp.51–60. (in Russian).

6. Vovk M.I., Galyan Ye.B., Podoprigora Ye.N. Method for the treatment of speech disorders. Ukraine patent for utility model № 95347. Bul. No 24. 25.12.14. (in Ukrainian).

7. Antomonov Yu. G., Kotova A. B. Functional load of human in the structure of biotechnical system. Cybernetics and Computer Engineering, 1989, no. 84, pp. 66–73. (in Russian).

8. Gritsenko V.І., Kotova A.B., Vovk M.I., Kozak L.M. Information technology in biology and medicine. Lectures: Tutorial. Kyiv: Nauk. Dumka, 2007. 381 p. (in Russian).

9. Vovk M.I. Bioinformation technology of motor control of a person. Cybernetics and Computer Engineering, 2010, no. 161, pp. 42–52. (in Russian).

10. Galyan Ye.B. The information component of hand movements training technology for speech restoration. Biomedical Engineering and Electronics , 2014, no 2. Available at: www.es.rae.ru/biofbe/199-958 (date: 18.08.2014) (in Russian).

11. Galyan Ye.B. Algorithm of parameter selection for hand movement training to restore speech. Biological and Medical Informatics and Cybernetic for Health Care: materials of annual science and technology seminar. Kiev: Zhukin Physical and Mathematical School, 18–22 June 2012. K: Acad. of Sciences of Ukraine, ITRC of IT and S, 2014. — available at http://www.irtc.org.ua /Inform/135_2014.pdf (in Russian).

12. Borgman C.L., Bates M.J., Cloonan M.V., Efthimiadis E.N., GillilandSwetland A.J., Kafai Y., Leazer G.L., Maddox A. Social aspects of digital libraries. Final Report to the National Science Foundation (1996) Los Angeles UCLA. Feb 16–17. — available at: http://is.gseis .ucla.edu/research/dl/index.html (date: 20.09.2014) (in Russian).

13. Anisimova N.S. Theoretical basis and methodology of use of multimedia technology in teaching. Thesis … Doctor of Education. St. Petersburg, 2002. 330 p.(in Russian).

14. Savchenko N.A. Using the multimedia technologies in general secondary education. М.: RUDN, 2006. Available at: http://www.ido.rudn.ru/nfk/mult/mult4.html (in Russian).

Received 05.12.2014