DOI:https://doi.org/10.15407/kvt192.03.064
Kibern. vyčisl. teh., 2018, Issue 3 (193), pp.
Shakhlina L.Ya.-G.1, DSc. (Medicine), Professor,
Professor of Sport Medicine cafedra
e-mail: sportmedkafedra@gmail.com
Aralova N.I.2, PhD. (Engineering),Senior Researcher,
Senior Researcher of Dept. of Optimization of Controlled Processes
e-mail: aralova@ukr.net
1 National University of Physical Education and Sport of Ukraine
Fiscultury Street, 1, Kiev, 03150, Ukraine
2 Institute of Cybernetics of National Academy of Science of Ukraine, Acad.Glushkov av., 40, Kiev, 03187, Ukraine
FORECASTING THE ORGANISM REACTION OF THE ATHLETES ON INHIBITING HYPOXIC MIXTURES ON THE MATHEMATICAL MODEL OF THE FUNCTIONAL RESPIRATION SYSTEM
Introduction. In the modern sports of higher achievements, the issues of training and competitive activity of athletes using the hypoxic factor in natural-mountain conditions or with artificial hypoxic training with the use of pressure chambers or hypoxicators continue to attract great interest among specialists in the field of physiology, medicine, sports pedagogy. The influence of reproductive hormones on the functional breathing system responsible for the aerobic capacity of the female body remains insufficiently studied. There are no scientifically substantiated programs for training athletes, mainly developing the quality of endurance, in conditions of hypoxic hypoxia, taking into account the phases of the menstrual cycle.
The purpose of the article is to determine the reaction of the functional breathing system and to reveal the degree of tissue hypoxia in athletes when inhaled hypoxic gas mixture with 11% oxygen in different phases of the menstrual cycle.
Results. On the mathematical model of the functional breathing system, based on physiological examination data, an imitation of a hypoxic mixture with athletes was performed with athletes of 11% oxygen in different phases of the menstrual cycle. The partial pressures and voltages of oxygen in alveolar air, arterial and mixed venous blood, heart, brain and skeletal muscle tissues were calculated. Numerical experiments were also performed with the replacement of the real values of the minute volume of respiration and the minute volume of blood in the corresponding phases of MC for adaptation processes in other phases of the cycle.
Conclusions. The results of the prediction on the mathematical model of the respiratory system of the athlete’s reactions to the inhalation of hypoxic mixtures testify to the specificity of functional self-regulation and, consequently, the adaptive capabilities to the hypoxia of the female body during cyclic changes in the hormonal status in different phases of the menstrual cycle. The results of preliminary studies show that under hypoxic conditions, as a result of inhalation of a gas mixture with 11% oxygen without a compenetration increase in pulmonary ventilation and systemic circulation, the oxygen tension in the body tissues may be below the critical level and with different degrees of expression in different phases of the MC, which is confirmed by the presented results of calculation on a mathematical model of oxygen tension in the studied tissues.
The obtained results testify to the need for further study of the individual reactions of the organism of athletes in conditions of hypoxia for the scientific substantiation of sports training for women taking into account the biological characteristics of their organism.
Keywords: mathematical model of the functional breathing system, training process of athletes, interval hypoxic training, phases of the menstrual cycle, functional self-organization of the organism
REFERENCES
1. Olympic sport, by V.N. Platonova (ed.). Kyiv: Olympic literature, 2009. V. 2. P. 641–671. (in Russian).
2. Shakhlina L.- Ya. G., Chistyakova MA Psychophysiological conditions of athletes of high qualification, who specialize in judo in various phases of the menstrual cycle. Physiotherapy exercises and sports medicine. 2013. No. 8 (116). P. 11–16. (in Russian).
3. Shakhlina L.Ya.-G., Vovchanytsya Yu.L., Kalitka S.V. Morphological and biochemical composition of red blood of athletes of high qualification, specializing in sports, the predominant development of the quality of endurance. Therapeutic physical training and sports medicine. 2013. No. 9 (117). P. 22–25. (in Russian).
4. Shakhlina L.Ya.-G. The reaction of the athlete’s body to reduce the oxygen content in the inspired air in different phases of the menstrual cycle. Sports medicine. 2008. No. 1. P. 78–82. (in Russian).
5. Iordanskaya F.A. Man and woman in the sport of higher achievements. Problems of sexual dimorphism. Moscow: Sov.sport, 2012. 256 p. (in Russian).
6. Shakhlina L.Ya.-G. Features of functional adaptation of the organism of high-qualified athletes to large physical loads. Sports Medicine. 2012. No. 1. C. 20–30. (in Russian).
7. Shakhlina L.Ya.-G., Evpak N.A. Interrelation of the psychophysiological state and special working capacity of athletes specializing in water polo. Sports medicine. 2015. N 1–2. P.59–63. (in Russian).
8. Kolchinskaya AZ, Tsyganova TN, Ostapenko LA Normobaric interval hypoxic training in medicine and sports. Moscow: Medicine, 2003. 408 p. (in Russian).
9. Shakhlina L.Ya.-G. Medical and biological principles of sports training of women. Kyiv: Nauk. dumka, 2001. 325 p. (in Russian).
10. Onopchuk Yu.N., Beloshitsky P.V., Aralova N.I. To the question of the reliability of the functional systems of the organism. Kibernetika i vyčislitel’naâ tehnika. 1999. Issue. 122. P. 72–82. (in Russian).
11. Sport medicine: Textbook for students of higher educational institutions of physical education / editor L.Ya.-G. Shakhlina. Kiev: Naukova dumka, 2016. 452 p. (in Russian).
12. Onopchuk Yu.N., Gritsenko V.I., Vovk M.I., Kotova A.B. & other. Homeostasis of the functional respiratory system as a result of intrasystemic and systemic-environmental information interaction. Bioecomedicine. Single information space. Kiev. 2001. P. 59–81. (in Russian).
13. Onopchuk Yu.N., Gritsenko V.I., Vovk M.I., Kotova A.B. & other. Homeostasis of the functional circulatory system as a result of intrasystemic and systemic-environmental information interaction. Bioecomedicine. Single information space. Kiev. 2001. P. 82–104. (in Russian).
14. Aralova N.I., Shakhlina L. Ya.-H. The mathematical models of functional self-organization of the human respiratory system with a change of the hormonal states of organism. Journal of Automation and Information Sciences. No. 3, pp. 132–141. (in Russian).
15. Secondary tissues hypoxia ed. A.Z. Kolchinskaya. Kyiv: Nauk.dumka, 1983. 253 p. (in Russian).
16. K.B. Polinkevich, Y.N. Onopchuk. Conflicts in the regulation of the primary functions of the respiratory system of the body and the mathematical model for their solution. Cybernetic. 1986, No. 3, pp. 100–104 (in Russian).
17. Onopchuk Yu.N. On one imitation model for the study of complex physiological processes. Cybernetics. 1979. No. 3. P. 66–72. (in Russian).
18. Onopchuk Yu.N. About a general scheme of regulation of external respiration regimes, minute volume of blood and tissue blood flow by oxygen demand. Cybernetics. 1980. N 3. P. 110–115. (in Russian).
19. Onopchuk Yu.N., Polinkevich K.B., Bobryakova I.L. The conceptual models of control of the respiratory system and their analysis in mathematical modeling. Cybernetics and system analysis. 1993. No. 6. P. 76–88. (in Russian).
20. Aralova N. I. Research of role of hypoxia, hypercaphnia and hypometabolism in the regulation of the respiratory ststem in their internal and external disturbances based on the mathematical model. Kibernetika i vyčislitel’naâ tehnika. 2017. No 188, pp. 49–64. (in Russian).
21. Aralova A.A., Aralova N. I., Kovalchuk – Khimiuk L. A., Onopchuk, Yu. N. Computer – aided information system of functional diagnostics of sportsmen. Control Systems and Computers. 2008. No 3, pp. 73–78. (in Russian).
22. Aralova N.I. Mathematical model of the mechanism short- and medium-functional adaptation of breath of persons work in extreme conditions high. Kibernetika i vyčisli-tel’naâ tehnika. 2015. Vol. 182. P. 16–21. (in Russian).
23. Aralova N.I. Information technologies of decision making support for rehabilitation of sportsmen engaged in combat sport. Journal of Automation and Information Sciences. 2016. No. 3. P. 160–170. (in Russian). https://doi.org/10.1615/JAutomatInfScien.v48.i6.70
24. Kolchinskaya A.Z. Oxygen regimes of an organism of a child and adolescent Kyiv: Nauk. dumka, 1973. 320 p.
Received 04.05.2018