ISSUE 181, article 1

DOI:https://doi.org/10.15407/kvt181.01.005

Kibern. vyčisl. teh., 2015, Issue 181, pp.

Fainzilberg L.S., Orikhovska K.B.

International Research and Training Center for Information Technologies and Systems of National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine

INFORMATION TECHNOLOGY OF THE ORGANISM ADAPTATION RESERVES ASSESSMENT IN FIELD CONDITIONS

Introduction. Building an effective IT that provides an assessment of the reserve capacity of the organism to physical and emotional overload has both cognitive and practical importance. The relevance of such IT is increasing in our time since it is necessary to provide reliable results in field conditions. This requires prompt, convenient and reliable tools for obtaining test results, which is to be clear not only the decision maker, but also to the examinee that has no medical education.
The purpose of the article is to propose a new information technology for assessing the adequacy the body’s reaction and recovery processes of the cardiovascular system of a human on a set of single-channel ECG parameters.
Methods. The proposed IT includes a set of interacting modules, in particular input module and ECG processing module, which realized on FAZAGRAF® complex. This complex provides recording of the ECG first standard lead and automatic detection of 32 ECG parameters and variability of the cardiac cycle in three states: at rest, immediately after dosage load and after 3 minutes of rest. A distinctive feature of the technology is that decisions on adequate or inadequate response of the organism to physical or emotional overload are realized by two methods — qualitative assessment and quantitative assessment.
Results. It is shown that a qualitative assessment of the reaction to the overload can be carried out on the basis of recognition of patterns’ classes generated by each triplet of measured parameters, and comparing the detected pattern with the dominant classes of each of the parameters. Quantitative assessment can be carried out based on the comparison of the generalized parameter with thresholds.
The algorithm for determining the dominant classes of parameters is proposed. Statistical analysis showed that the probability of appearance of patterns’ classes and generalized parameter values significantly different in the groups of trained and untrained persons. Examples of decision-making of the adequate and inadequate reaction of the organism on the overload are given.
Conclusions. The proposed IT satisfies the formulated requirements to field tools for testing the reserve capacity of the cardiovascular system during physical and emotional overloads.

Keywords: information technology, cardiovascular system, assessment of reserve capacity of the organism.

Download full text (ru)!

References

1 Heart rate variability. Standards of Measurement, Physiological interpretation and clinical use // Circulation. 1996, vol. 93. P. 1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043

2 Korkushko O.V., Pisaruk A.V., Shatilo V.G., Lishnevskaya V.Y., Chebotarev N.D.,

3 Pohoretsky Y.N. Analysis of heart rate variability in clinical practice (age aspects). Kijv: Institut gerontologii AMN. 2002, 189 p. (in Russian).

4 Baevsky R.M., Berseneva A.P. Estimation of adaptation capabilities of the organism, and the risk of the disease development. Moskow: Medicine. 1997, 236 p. (in Russian).

5 Aronov D.M., Lupanov V.P. Functional tests in cardiology. Moskow: Medpress-inform. 2002, 296 p. (in Russian).

6 Halson S.L., Jeukendrup A.E. Does Overtraining Exist? An Analysis of Overreaching and Overtraining Research. Sports Medicine. 2004, vol. 34. No. 14. P. 967–981. https://doi.org/10.2165/00007256-200434140-00003

7 Chaykovsky I.A., Lapshin I.E., Fainzilberg L.S., Secretnyi V.A. ECG analysis in phase space as a way of monitoring the functional state of athletes who specialize in football. Sports Medicine. 2011. No 1–2. P. 63–68. (in Ukrainian).

8 Minina O.M., Bukov Y.O., Fainzilberg L.S. Rapid control method of myocardial functional reserve and physical activity adequacy. UA Patent 87096, 2014, bul. 2. (in Ukrainian).

9 Fainzilberg L.S. Computer diagnostics by phase portrait of electrocardiogram. Kiev: Osvita Ukrainy. 2013, 191 p. (in Russian).

10 Chaykovsky I.A., Budnik M.M. Method for physiological assessment psychoemotional or physical stress. UA Patent 54185, 2010, bul. 20. (in Ukrainian).

11 Di Bernardo D., Murray A. Computer model for study of cardiac repolarization.

12 J. Cardiovasc. Electrophysiol. 2000, vol. 11. P. 895–899. https://doi.org/10.1111/j.1540-8167.2000.tb00069.x

13 Wentsel E.S. Theory of probability. Moskow: Science. 1969. 575 p. (in Russian).

12 Fainzilberg LS, Zhuk T.N. Guaranteed efficiency estimation of diagnostic tests based on the amplified ROC-analysis. Control systems and machines. 2009. No 5. P. 3–13. (in Russian).

Received 28.05.2015