DOI:https://doi.org/10.15407/kvt212.02.033
Cybernetics and Computer Engineering, 2023, 2(212)
ARALOVA N.I.1, DSc (Engineering), Senior Researcher,
Senior Researcher of Optimization of Controlled Processes Department,
ORCID 0000-0002-7246-2736,
e-mail: aralova@ukr.net
RADZIEJOWSKI P.A.2, DSc (Biology), Professor
ORCID 0000-0001-8232-2705,
e-mail: p.radziejowski@wseit.edu.pl
RADZIEJOWSKA M.P.3, DSc (Biology).,
Professor of Faculty of Management,
Department of Innovations
and Safety Management Systems
ORCID 0000-0002-9845-390X,
e-mail: maria.radziejowska@pcz.pl
ARALOVA A.A.1, PhD (Mathematics)
Researcher of the Department of Methods for Discrete Optimization,
Mathematical Modelling and Analyses of Complex Systems
ORCID 0000-0001-7282-2036,
email: aaaralova@gmail.com
1 Institute of cybernetics of National Academy of Science of Ukraine,
40, Acad.Glushkov av., 03187, Kyiv, Ukraine
2 Kazimiera Milanowska College of Education and Therapy , Poznan, Poland
3 Czestochowa University of Technology
19b, Armii Krajowej str., 42-200, Częstochowa, Poland
APPLICATION OF THE MATHEMATICAL MODEL OF THE FUNCTIONAL BREATHING SYSTEM FOR OPTIMAL CONTROL OF THE TRAINING PROCESS OF HIGHLY QUALIFIED ATHLETES
Introduction. One of the most important tasks of sports training in modern sports of the highest achievements is the ability to control the state of the athlete’s body in the process of training and competitive activities. The use of a systematic approach in the training of highly qualified athletes, the system-forming factor in which is sports performance, presupposes the use of various non-traditional methods of improving the adaptation of athletes to the ever-increasing training loads. The development of methods and means for increasing physical performance and, in particular, in the practice of high-performance sports, is one of the most important principles of modern sports medicine. One of these methods is interval hypoxic training.
The purpose of the paper is to reveal the effectiveness of the process of adaptation to hypoxic hypoxia during the training process in the middle mountains and during the course of normobaric interval hypoxic training as a means of controlling the training process for increasing work capacity and improving the state of the functional respiratory system.
Methods. A system approach was used to assess the functional state of the respiratory system, combining instrumental examination with the subsequent use of mathematical models of the oxygen regimes of the body, predicting the state of functional respiratory system on the mathematical model of the respiratory system with optimal control, aerobic performance and working capacity.
Results. The combination of separate conducting of the IHT course and the traditional planned training process plays a significant role in the management of the training process because increases the effectiveness of the constructive effect of hypoxia
Separate use of hypoxic hypoxia and load hypoxia significantly increases the functional state of the respiratory system, increases aerobic performance and performance of athletes in comparison with the simultaneous effects of hypoxic hypoxia and load hypoxia during the training process in mid-altitude mountains.
Keywords: functional respiratory system, intermittent hypoxic training, athletes’ performance, the effectiveness of the adaptation process of athletes, mathematical model of the respiratory system with optimal control.
REFERENCES
1. Kolchinskaya A.Z. Mechanisms of action of interval hypoxic training. Interval hypoxic training. (Efficiency. Mechanisms of action): Sat. scientific. tr. Kiev. 1992. 107-113.
2. Kolchinskaya A.Z., Tsyganova T.N., Ostapenko L.A. Normobaric interval hypoxic training in medicine and sports. M .: Medicine, 2003 408 p.
3. Nakamoto F.P., Ivamoto R.K., Andrade M.dos S., de Lira C.A., Silva B.M., da Silva A.C. Effect of Intermittent Hypoxic Training Followed by Intermittent Hypoxic Exposure on Aerobic Capacity of Long Distance Runners. J Strength Cond Res. 2016 Jun;30(6):1708-20.
https://doi.org/10.1519/JSC.0000000000001258
4. Sch!ö!ffel N., Senff T., Gerber A., de Roux A., Bauer T.T., Groneberg D.A. Normobare Hypoxie: Aktuelle Implikationen f!ü!r Pneumologie und Leistungsdiagnostik [Intermittent hypoxic training–the state of science]. Pneumologie. 2008 May;62(5):279-83. German.
https://doi.org/10.1055/s-2008-1038113
5. Serebrovskaya T.V. Intermittent hypoxia research in the former soviet union and the commonwealth of independent States: history and review of the concept and selected applications. High Alt Med Biol. 2002 Summer;3(2):205-21.
https://doi.org/10.1089/15270290260131939
6. Dufour S.P, Ponsot E., Zoll J., Doutreleau S., Lonsdorfer-Wolf E., Geny B., Lampert E., Fl!ü!ck M., Hoppeler H., Billat V., Mettauer B., Richard R., Lonsdorfer J. Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity.!
!J Appl Physiol (1985). 2006 Apr;100(4):1238-48.
https://doi.org/10.1152/japplphysiol.00742.2005
7. Holliss B.A., Fulford J., Vanhatalo A., Pedlar C.R., Jones A.M. Influence of intermittent hypoxic training on muscle energetics and exercise tolerance. J Appl Physiol.(1985). 2013 Mar 1;114(5):611-9.
https://doi.org/10.1152/japplphysiol.01331.2012
8. Katayama K., Sato Y., Shima N., Qiu J.C., Ishida K., Mori S., Miyamura M. Enhanced chemosensitivity after intermittent hypoxic exposure does not affect exercise ventilation at sea level. Eur J Appl Physiol. 2002 Jun;87(2):187-91.
https://doi.org/10.1007/s00421-002-0594-4
9. Serebrovskaya T.V., Karaban I.N., Kolesnikova E.E., Mishunina T.M. Kuzminskaya L.A, Serbrovsky A.N., Swanson R.J. Human hypoxic ventilatory response with blood dopamine content under intermittent hypoxic training. Can J Physiol Pharmacol. 1999 Dec;77(12):967-73. PMID: 10606443.
https://doi.org/10.1139/y99-096
10. Foster G.E. McKenzie DC, Sheel AW. Effects of enhanced human chemosensitivity on ventilatory responses to exercise. Exp Physiol. 2006 Jan;91(1):221-8.
https://doi.org/10.1113/expphysiol.2005.032276
11. Katayama K., Shima N., Sato Y., Qiu J.C., Ishida K., Mori S., Miyamura M/. Effect of intermittent hypoxia on cardiovascular adaptations and response to progressive hypoxia in humans. High Alt Med Biol. 2001 Winter;2(4):501-8.
https://doi.org/10.1089/152702901753397063
12. Foster G.E., McKenzie D.C., Milsom W.K., Sheel A.W. Effects of two protocols of intermittent hypoxia on human ventilatory, cardiovascular and cerebral responses to hypoxia. J Physiol. 2005 Sep 1;567(Pt 2):689-99.
https://doi.org/10.1113/jphysiol.2005.091462
13. Schmidt W., Prommer N. Impact of alterations in total hemoglobin mass on VO 2max. Exerc Sport Sci Rev. 2010 Apr;38(2):68-75.
https://doi.org/10.1097/JES.0b013e3181d4957a
14. Burtscher M., Pachinger O., Ehrenbourg I., Mitterbauer G., Faulhaber M., P!ü!hringer R., Tkatchouk E. Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int J Cardiol. 2004 Aug;96(2):247-54.
https://doi.org/10.1016/j.ijcard.2003.07.021
15. Katayama K., Fujita H., Sato K., Ishida K., Iwasaki K., Miyamura M. Effect of a repeated series of intermittent hypoxic exposures on ventilatory response in humans. High Alt Med Biol. 2005 Spring;6(1):50-9.
https://doi.org/10.1089/ham.2005.6.50
16. Ponsot E., Dufour S.P., Zoll J., Doutrelau S., N’Guessan B., Geny B., Hoppeler H., Lampert E., Mettauer B., Ventura-Clapier R., Richard R. Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle. J Appl Physiol (1985). 2006 Apr;100(4):1249-57.
https://doi.org/10.1152/japplphysiol.00361.2005
17. Basset F.A., Joanisse D.R., Boivin F., St-Onge J., Billaut F., Dor!é! J., Chouinard R., Falgairette G., Richard D., Boulay M.R. Effects of short-term normobaric hypoxia on haematology, muscle phenotypes and physical performance in highly trained athletes. Exp Physiol. 2006 Mar;91(2):391-402.
https://doi.org/10.1113/expphysiol.2005.031682
18. Vogt M., Billeter R., Hoppeler H. Effect of hypoxia on muscular performance capacity: “living low–training high”. Ther Umsch. 2003 Jul;60(7):419-24. German.
https://doi.org/10.1024/0040-5930.60.7.419
19. Zoll J., Ponsot E., Dufour S., Doutreleau S., Ventura-Clapier R., Vogt M., Hoppeler H., Richard R., Fl!ü!ck M.Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J Appl Physiol (1985). 2006 Apr;100(4):1258-66.
https://doi.org/10.1152/japplphysiol.00359.2005
20. Krivoshchekin S.G., Divert V.E., Mel’nikov V.N., Vodianitski!ĭ! S.N., Girenko L.A. Comparative analysis of gas exchange and cardiorespiratory systems reactions to increasing normobaric hypoxia and physical load of swimmers and skiers. Fiziol Cheloveka. 2013 Jan-Feb;39(1):117-25. Russian.
https://doi.org/10.1134/S0362119712060072
21. Mucci P., Blondel N.., Fabre C., Nourry C., Berthoin S. Evidence of exercise-induced O2 arterial desaturation in non-elite sportsmen and sportswomen following high-intensity interval-training. Int J Sports Med. 2004 Jan;25(1):6-13.
https://doi.org/10.1055/s-2003-45225
22. Koehle M.S., Foster G.E., McKenzie D.C., Sheel A.W. Repeated measurement of hypoxic ventilatory response as an intermittent hypoxic stimulus. Respir Physiol Neurobiol. 2005 Jan 15;145(1):33-9.
https://doi.org/10.1016/j.resp.2004.09.004
23. Katayama K., Sato Y., Ishida K., Mori S., Miyamura M. The effects of intermittent exposure to hypoxia during endurance exercise training on the ventilatory responses to hypoxia and hypercapnia in humans. Eur J Appl Physiol Occup Physiol. 1998 Aug;78(3):189-94.
https://doi.org/10.1007/s004210050406
24. Park H.Y., Sunoo S., Nam S.S. The Effect of 4 Weeks Fixed and Mixed Intermittent Hypoxic Training (IHT) on Respiratory Metabolic and Acid-base Response of Capillary Blood During Submaximal Bicycle Exercise in Male Elite Taekwondo Players. J Exerc Nutrition Biochem. 2016 Dec 31;20(4):35-43.
https://doi.org/10.20463/jenb.2016.0035
25. Temme L.A., St Onge P., Adams M., Still D.L., Statz J.K., Williams S.T. A Novel, Inexpensive Method to Monitor, Record, and Analyze Breathing Behavior During Normobaric Hypoxia Generated by the Reduced Oxygen Breathing Device. Mil Med. 2017 Mar;182(S1):210-215.
https://doi.org/10.7205/MILMED-D-16-00053
26. Lippi G., Franchini M., Banfi G. Normobaric hypoxia and sports: the debate continues. Eur J Appl Physiol. 2011 Jan;111(1):159-60.
https://doi.org/10.1007/s00421-010-1630-4
27. Millet G. P., Brocherie F.. Hypoxic Training Is Beneficial in Elite Athletes. Medicine and Science in Sports and Exercise, American College of Sports Medicine (ACSM), 2020, 52 (2), pp.515- 518.10.1249/MSS.0000000000002142.
https://doi.org/10.1249/MSS.0000000000002142
28. Ambro!ż!y T., Maciejczyk M., Klimek AT., Wiecha S., Snopkowski P., Pa!ł!ka T., Jaworski J. , Ambro!ż!y D. , Rydzik !Ł!., Cynarski W. The Effects of Intermittent Hypoxic Training on Anaerobic and Aerobic Power in Boxers Int. J. Environ. Res. Public Health. 2020, 17(24). 9361.
https://doi.org/10.3390/ijerph17249361
29. Radziievs’ki!ĭ! P.O., Radziievs’ka M.P.Hypoxic training of high qualification sportsmen. Fiziol Zh. 2003;49(3):126-33. Ukrainian. PMID: 12918261.
30. Shatilo V.B., Korkushko O.V., Ischuk V.A., Downey H.F., Serebrovskaya T.V. Effects of intermittent hypoxia training on exercise performance, hemodynamics, and ventilation in healthy senior men. High Alt Med Biol. 2008 Spring;9(1):43-52.
https://doi.org/10.1089/ham.2007.1053
31. Park H.Y., Jung W.S., Kim J., Hwang H., Lim K. Efficacy of intermittent hypoxic training on hemodynamic function and exercise performance in competitive swimmers!
!J Exerc Nutrition Biochem. 2018 Dec 31;22(4):32-38.
https://doi.org/10.20463/jenb.2018.0028
32. Rodr!í!guez F.A., Truijens M.J., Townsend N.E., Stray-Gundersen J., Gore C.J., Levine B.D. Performance of runners and swimmers after four weeks of intermittent hypobaric hypoxic exposure plus sea level training. J Appl Physiol (1985). 2007 Nov;103(5):1523-35.
https://doi.org/10.1152/japplphysiol.01320.2006
33. Roels B., Thomas C., Bentley D.J., Mercier J., Hayot M., Millet G.J. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers. Appl Physiol (1985). 2007 Jan;102(1):79-86.
https://doi.org/10.1152/japplphysiol.01319.2005
34. Desplanches D., Hoppeler H., Linossier M.T., Denis C., Claassen H., Dormois D., Lacour J.R., Geyssant A. Effects of training in normoxia and normobaric hypoxia on human muscle ultrastructure. Pflugers Arch. 1993 Nov;425(3-4):263-7.
https://doi.org/10.1007/BF00374176
35. Katayama K., Matsuo H., Ishida K., Mori S., Miyamura M. Intermittent hypoxia improves endurance performance and submaximal exercise efficiency. High Alt Med Biol. 2003 Fall;4(3):291-304.
https://doi.org/10.1089/152702903769192250
36. Holliss B.A., Burden R.J., Jones A.M., Pedlar C.R. Eight weeks of intermittent hypoxic training improves submaximal physiological variables in highly trained runners. J Strength Cond Res. 2014 Aug;2 8(8):2195-203.
https://doi.org/10.1519/JSC.0000000000000406
37. Debevec T., Amon M., Keramidas M.E., Kounalakis S.N., Pisot R., Mekjavic I.B. Normoxic and hypoxic performance following 4 weeks of normobaric hypoxic training. Aviat Space Environ Med. 2010 Apr;81(4):387-93.
https://doi.org/10.3357/ASEM.2660.2010
38. Czuba M., Bril G., P!ł!oszczyca K., Piotrowicz Z., Chalimoniuk M., Roczniok R., Zembro!ń!-!Ł!acny A., Gerasimuk D., Langfort J. Intermittent Hypoxic Training at Lactate Threshold Intensity Improves Aiming Performance in Well-Trained Biathletes with Little Change of Cardiovascular Variables. Biomed Res Int. 2019 Sep 25;2019:1287506.
https://doi.org/10.1155/2019/1287506
39. Nakamoto F.P., Ivamoto R.K., dos Andrade M. S., de Lira C.A., Silva B.M., da Silva A.C. Effect of Intermittent Hypoxic Training Followed by Intermittent Hypoxic Exposure on Aerobic Capacity of Long Distance Runners. J Strength Cond Res. 2016 Jun;30(6):1708-20. doi: 10.1519/JSC.0000000000001258.
https://doi.org/10.1519/JSC.0000000000001258
41. Haufe S., Wiesner S., Engeli S., Luft F.C., Jordan J. Influences of normobaric hypoxia training on metabolic risk markers in human subjects. Med Sci Sports Exerc. 2008 Nov;40(11):1939-44.
https://doi.org/10.1249/MSS.0b013e31817f1988
42. Ogawa T., Ohba K., Nabekura Y., Nagai J., Hayashi K., Wada H., Nishiyasu T. Intermittent short-term graded running performance in middle-distance runners in hypobaric hypoxia. Eur J Appl Physiol. 2005 Jun;94(3):254-61.
https://doi.org/10.1007/s00421-005-1322-7
43. Radziievs’ky!ĭ! P.O. Mechanisms of adaptation to intermittent hypoxic training course in sportsmen of high qualification. Fiziol Zh. 2005;51(2):90-5. Ukrainian. PMID: 15943237.
44. Katayama K., Sato K., Matsuo H., Ishida K., Mori S., Miyamura M. Effects of intermittent hypoxic training and detraining on ventilatory chemosensitive adaptations in endurance athletes. Adv Exp Med Biol. 2004;551:299-304.
https://doi.org/10.1007/0-387-27023-X_45
45. Poprz!ę!cki S., Czuba M., Zaj!ą!c A., Karpi!ń!ski J., Wilk R., Bril G., Maszczyk A., Toborek M. The blood antioxidant defence capacity during intermittent hypoxic training in elite swimmers. Biol Sport. 2016 Dec;33(4):353-360.
https://doi.org/10.5604/20831862.1221607
46. Sanchez A.M.J., Borrani F. Effects of intermittent hypoxic training performed at high hypoxia level on exercise performance in highly trained runners. J Sports Sci. 2018 Sep;36(18):2045-2052.
https://doi.org/10.1080/02640414.2018.1434747
47. Serebrovska T.V., Serebrovska Z.O., Egorov E. Fitness and therapeutic potential of intermittent hypoxia training: a matter of dose. Fiziol Zh. 2016;62(3):78-91.
https://doi.org/10.15407/fz62.03.078
48. Ji W., Wang L., He S., Yan L., Li T., Wang J., Kong A.T., Yu S., Zhang Y. Effects of acute hypoxia exposure with different durations on activation of Nrf2-ARE pathway in mouse skeletal muscle. PLoS One. 2018 Dec 4;13(12).
https://doi.org/10.1371/journal.pone.0208474
49. Toigo M., Jacobs R.A., Lundby C. Hypoxic training: effect on mitochondrial function and aerobic performance in hypoxia. Med Sci Sports Exerc. 2014 Oct;46(10):1936-45.
https://doi.org/10.1249/MSS.0000000000000321
50. Bakkman L., Sahlin K., Holmberg H.C., Tonkonogi M. . Quantitative and qualitative adaptation of human skeletal muscle mitochondria to hypoxic compared with normoxic training at the same relative work rate. Acta Physiol (Oxf). 2007 Jul;190(3):243-51. doi: 10.1111/j.1748-1716.2007.01683.x.
https://doi.org/10.1111/j.1748-1716.2007.01683.x
51. Shill D.D., Southern W.M., Willingham T.B., Lansford K.A. McCully K.K., Jenkins N.T. Mitochondria-specific antioxidant supplementation does not influence endurance exercise training-induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake. J Physiol. 2016 Dec 1;594(23):7005-7014.
https://doi.org/10.1113/JP272491
52. Robach P., Bonne T., Fl!ü!ck D., B!ü!rgi S., Toigo M., Jacobs R.A., Lundby C. Hypoxic training: effect on mitochondrial function and aerobic performance in hypoxia. Med Sci Sports Exerc. 2014 Oct;46(10):1936-45.
https://doi.org/10.1249/MSS.0000000000000321
53. Salvadego D., Keramidas M.E., K!ö!leg!å!rd R., Brocca L., Lazzer S., Mavelli I., Rittweger J., Eiken O., Mekjavic I.B., Grassi B. PlanHab* : hypoxia does not worsen the impairment of skeletal muscle oxidative function induced by bed rest alone. J Physiol. 2018 Aug;596(15):3341-3355.
https://doi.org/10.1113/JP275605
54. Serebrovskaya T.V., Xi L. Intermittent hypoxia training as non-pharmacologic therapy for cardiovascular diseases: Practical analysis on methods and equipment. Exp Biol Med (Maywood). 2016 Sep;241(15):1708-23.
https://doi.org/10.1177/1535370216657614
55. Saghiv M.S., Sagiv M.S. Basic Exercise Physiology. Clinical and Laboratory Perspective. Springer. 2020. 582.
https://doi.org/10.1007/978-3-030-48806-2
56. Bonetti D.L., Hopkins W.G. Sea-Level Exercise Performance Following Adaptation to Hypoxia. A Meta-Analysis. Sports Medicine, 2009. 39 (2). 107-127.
https://doi.org/10.2165/00007256-200939020-00002
57. Bonetti D.L., Hopkins W.G. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 2009;39(2):107-27.
https://doi.org/10.2165/00007256-200939020-00002
58. Hamlin M.J., Lizamore C.A., Hopkins W.G. The Effect of Natural or Simulated Altitude Training on High-Intensity Intermittent Running Performance in Team-Sport Athletes: A Meta-Analysis. Sports Med. 2018 Feb;48(2):431-446. doi: 10.1007/s40279-017-0809-9. Erratum in: Sports Med. 2017 Nov 30;: PMID: 29129021.
https://doi.org/10.1007/s40279-017-0809-9
59. Humberstone-Gough C.E., Saunders P.U., Bonetti D.L., Stephens S., Bullock N., Anson J.M., Gore C.J. Comparison of live high: train low altitude and intermittent hypoxic exposure. J Sports Sci Med. 2013 Sep 1;12(3):394-401. PMID: 24149143; PMCID: PMC3772580
60. Cai M., Chen X., Shan J., Yang R., Guo Q., Bi X., Xu P., Shi X., Chu L., Wang L. Intermittent Hypoxic Preconditioning: A Potential New Powerful Strategy for COVID-19 Rehabilitation. Front Pharmacol. 2021 Apr 30;12:643619.
https://doi.org/10.3389/fphar.2021.643619
61. Aralova A.A., Aralova N.I., Klyuchko O.M., Mashkin V.I., Mashkina I.V. Information system for the examination of organism adaptation characteristics of flight crews’ personnel // Electronics and control systems .2018.2.106-113.
https://doi.org/10.18372/1990-5548.56.12944
62. Aralova N. I. Information technologies of decision making support for rehabilitation of sportsmen engaged in combat sport. J. Automation Information Sci. 2016, V. 3, P. 160-170.
https://doi.org/10.1615/JAutomatInfScien.v48.i6.70
63. Aralova N.I., Shakhlina L.Ya.-G., Futornyi S.M., Kalytka S.V. (2020) Information Technologies for Substantiation of the Optimal Course of Interval Hypoxic Training in Practice of Sports Training of Highly Qualified Sportswomen Journal of Automation and Information Sciences pp 41-55.
https://doi.org/10.1615/JAutomatInfScien.v52.i1.50
64. Aralova N.I.Integrated mathematical model of self-organization of functional systems of the organism for imitation viral diseases. Journal of Automation and Information Sciences . 2020. 4: 127-137. DOI: 10.1615/JAutomatInfScien.v52.i7.50 pages 52-62
https://doi.org/10.1615/JAutomatInfScien.v52.i7.50
65. Shakhlina L.Ya.-G. Aralova N.I. (2018) Forecasting the organism reaction of the athletes on inhibiting hypoxic mixtures on the mathematical model of the functional respiration system Kibernetika i vycislitelnaa tehnika 193: 64-82.
https://doi.org/10.15407/kvt192.03.064
66. Aralova N.I., Shakhlina L.Ya.-G. (2018) The mathematical models of functional self-organization of the human respiratory system with a change pf the hormonal states of organism. Journal of Automation and Information Sciences pages 49-59
https://doi.org/10.1615/JAutomatInfScien.v50.i5.50
67. Richardson A.J., Gibson O.R.. Simulated hypoxia does not further improve aerobic capacity during sprint interval training. J Sports Med Phys Fitness. 2015 Oct;55(10):1099-106.
68. Ferri A., Yan X., Kuang J., Granata C., Oliveira R.S.F., Hedges C.P., Lima-Silva A.E., Billaut F., Bishop D.J. Fifteen days of moderate normobaric hypoxia does not affect mitochondrial function, and related genes and proteins, in healthy men. Eur J Appl Physiol. 2021 Aug;121(8):2323-2336.
https://doi.org/10.1007/s00421-021-04706-4
69. Debevec T., Mekjavic I.B. Short intermittent hypoxic exposures augment ventilation but do not alter regional cerebral and muscle oxygenation during hypoxic exercise. Respir Physiol Neurobiol. 2012 Apr 30;181(2):132-42.
https://doi.org/10.1016/j.resp.2012.02.008
70. Julian C.G., Gore C.J., Wilber R.L., Daniels J.T., Fredericson M., Stray-Gundersen J., Hahn A.G., Parisotto R., Levine B.D. Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. J Appl Physiol (1985). 2004 May;96(5):1800-7.
https://doi.org/10.1152/japplphysiol.00969.2003
71. Onopchuk Yu.N. Homeostasis of functional respiratory system as a result of intersystem and system-medium informational interaction. Bioecomedicine. Uniform information space /Ed. by V.I. Gritsenko. Kiev.2001.59-84 (In Russian)
72. Onopchuk Yu.N. Homeostasis of the functional circulatory system as a result of intersystem and system-medium informational interaction. Bioecomedicine. Uniform information space / Ed. by V.I. Gritsenko.Kiev.2001.85-104 (In Russian)
73. Aralova N. I. Mathematical models of functional respiratory system for solving the applied problems in occupational medicine and sports. Saarbr!ü!cken: LAP LAMBERT Academic Publishing GmbH&Co, KG. 2019, 368 p. (In Russian). ISBN 978-613-4-97998-6
74. Shakhlina L.Ya.-G. The reaction of the body of female athletes to a decrease in the content of oxygen in inhaled air in different phases of the menstrual cycle. Sports medicine. 2008. No 1. P. 78-82. (In Russian)
75. Secondary tissue hypoxia. Ed. Kolchinskaya A.Z. K.: Nauk.Dumka.1983.253 p. (In Russian)
76. Mankovskaya I.M., Lyabah K.G. Oxygen transport in muscle tissue in the process of adaptation to hypoxic hypoxia. Cf. Experiment. Medicine and biology. 2002. 471. 295-306.
https://doi.org/10.1007/978-1-4615-4717-4_36
Received 10.02.2023