Issue 2 (192), article 6


Kibern. vyčisl. teh., 2018, Issue 2 (192), pp.

Zlepko S.M.1,
D.Sc. (Engineering), Professor,
Head of the Department of Biomedical Engineering
Chernyshova T.A.2, Doctor
Maevsky O.E.3, Dr (Medical), Professor,
Head of the Department of Histology
Krivonosov V.E.4, docent,
Department of Biomedical Engineering
Azarkhov O.Y., Dr (Medical), Professor,
Head of the Department of Biomedical Engineering

1Vinnytsia National Technical University,
Khm. highway 95, 21021, Vinnytsia, Ukraine
2Medical Center of National Aviation University,
Cosmonaut Komarov ave., 1, 03058, Kyiv, Ukraine
3Nicholay Pirogov Vinnitsa National Medical University,
Pyrohova str, 56, 21000, Vinnytsia, Ukraine
4Priazovsky State Technical University,
Universytetska str, 7, 87500, Mariupol, Ukraine


Introduction. The development of information systems and technologies for the processing of medical images of cells obtained in the study of histological preparations is one of the most important and priority directions of modern medical science.
The purpose of the article is to detect the CPR at various localizations of malignant neoplasms is currently one of the topical issues in oncology.
Results. A distinctive feature of the CPR is the aggressive metastatic potential, which allows them to be considered as the main mechanism of tumor progression. The article describes the methods of detecting the CPC, the functions and operations of image processing. The modern methods and algorithms for processing and restoring biomedical images are analyzed. The work of information technology for the determination of circulating tumor cells in human blood is given step by step. A comparison of the developed technology and existing analogues is made.
Conclusions. Unlike the existing technology, it detects a 4-micromycle GPC in the study of blood samples from patients with micellar lung cancer. The doctor, thus, received an automatic technology for the determination of the CPP in peripheral or venous blood with high reliability and informativeness, with maximum preservation of the integrity and invulnerability of circulating tumor cells. The analysis of literary sources and their own clinical studies have confirmed that only technologies based on the ISET method allow the detection of very rare circulating trophoblast cells of the fetus from the mother’s blood.

Keywords: technology, circulating tumor cell, medical image, histology, treatment, definition, criterion.

Download full text!


1 Lukashevich M.M., Starovoytov V.V. Method of counting the number of cell nuclei on medical histological images. System analysis and applied informatics. 2016. No 2. P. 37–42. URL: (Last accessed: 15.05.2018) (in Russian).

2 Determination of CSC content in peripheral blood in patients with primary generalized breast cancer at the treatment stages. URL: (Last accessed: 15.05.2018) (in Russian).

3 Kagan M., Howard D., Bendele T., Mayes J., Silvia J., Repollet M., Doyle J. A Sample Preparation and Analysis System for Identification of Circulating Tumor Cells. Journal of Clinical Ligand Assay. 2002. V. 25, N 1. P. 104–110.

4 Vona G., Sabile A., Louha M., Sitruk V., Romana S., Schutze K., Capron F. Isolation by size of epithelial tumor cells?: a new method for the immunomorphological and molecular characterization of circulatingtumor cells. The American journal of pathology. 2000. V. 156, N 1. P. 57–63.

5 Hayes G., Busch R., Voogt J., Siah I., Gee T., Hellerstein M., Chiorazzi N. Isolation of malignant B cells from patients with chronic lymphocytic leukemia (CLL) for analysis of cell proliferation: validation of a simplified method suitable for multi-center clinical studies. Leukemia research. 2010. V. 34, N 6. P. 809–815.

6 Pavlov A.Yu., Gafanov R.A., Tsibulskiy A.D., Fastovets S.V., Kravtsov I.B., Isaev T.K. The role of evaluation of circulating tumor cells in prostate cancer: diagnosis and dynamic observation. RMJ. 2016. No 8. P. 480–487 (in Russian).

7 Cell Search. URL: (Last accessed: 25.04.2018)

8 Babyuk N.P. Method and system of estimation of dynamic changes of biomedical images in ophthalmology. Thesis, PhD (Engineering), Vinnitsia, VNTU, 2016, 24 p. (in Ukrainian

9 Hou JM, Krebs MG, Lancashire L, Sloane R, Backen A, Swain RK, ct al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol. 2012. No. 30(5). P. 525–532.

10 Ma YC, Wang L, Yu PL. Recent Advances and Prospects in the Isolation by Size of Epithelial Tumor Ceils (ISET) Methodology. Technol Cancer Res Treat. 2012. No. f 2(4). P. 295–309.

11 Farace F, Massard C, Vimond N, Drusch F, Jacques N, Billiot F, el al. A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. Br J Cancer. 2011. No. 105(6). P. 847–853.

12 Mouawia H, SakerA, Jais JP, Benachi A, Bussieres L, LacourB,el al. Circulating trophoblastic cells provide genetic diagnosis in 63 fetuses at risk for cystic fibrosis or spinal muscular atrophy. Reprod Blamed Online. 2012. No. 25(5). P. 503–520.

13 Burdenyuk I.I. Information technology for decision-making support in the analysis of biomedical data. Thesis, PhD (Engineering), Vinnitsia, VNTU, 2010. — 19 p. (in Ukrainian).

14 Ismailova G., Laget S., Paterlini-Brechot P. Diagnosis of circulatig tumor cells using ISET technology and their molecular characteristics for fluid biopsy: URL: (Last accessed: 13.05.2018) (in Russian).

15 15. Ledov V.K., Skrinnikova M.A., Popova O.P. Isolation of Circulating Tumor Cells by Isolated Size (ISET) (Overview). Vice versa Oncology. 2014. No 60(5). P. 548–552. (in Russian).

16 16. Cytological diagnosis of breast cancer URL: (Last accessed: 05.2018) (in Russian).

17 Sensitivity and specificity of diagnostic research URL: (Last accessed: 20.05.2018) (in Russian).

18 18. MedovyiyS., Pyatnitskiy A.M., Sokolinskiy B.Z. Innovative project Development of a complex of automated microscopy, its cloud functional, Internet resource of laboratory telemedicine for medical analysis of biomaterials (MECOS-CZ). Innovation and examination. Is. 2(9), 2012, s. 50–64. (in Russian).

19 Ablameyko S.V., Nedzved A.M. Processing of optical images of cellular structures in medicine. Minsk, 2005. 156 p. (in Russian).

20 Chernyshova T.A, Zlepko S.M., Timchik S.V., Krivonosov V.Ye., Zlepko O.S. Information system for obtaining and processing microscopic images of circulating tumor cells (CPC). Achievements of clinical and experimental medicine. 2017. No 4 (32). P. 39–46.

21 Chernishova T.A., Zlepko S.M., Azarkhov O.Yu., Danilkov S.O., Krivonosov V.Ye., Baranovskyi D.M. Medical Informatics and Engineering: Sciences. Pract. Journal 2017. No 4 (40). P. 30–35. (in Ukrainian).

Received 03.04.2018