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NEURAL DISTRIBUTED REPRESENTATIONS FOR ARTIFICIAL 
INTELLIGENCE AND MODELING OF THINKING  
  

Introduction. Current progress in the field of specialized Artificial Intelligence is associated 
with the use of Deep Neural Networks. However, they have a number of disadvantages: the need 
for huge data sets for learning, the complexity of learning procedures, excessive specialization 
for the training set, instability to adversarial attacks, lack of integration with knowledge of the 
world, problems of operating with structures known as binding or composition problem. Over-
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coming these shortcomings is a necessary condition for advancing from specialized Artificial 
Intelligence to general one, which requires the development of alternative approaches.  

The purpose of the paper is to present an overview of research in this direction, which 
has been carried out at the International Center for 25 years. The approach being developed 
stems from the ideas of N. M. Amosov and his scientific school. Connections to the Hyperdi-
mensional Computing (HDC) and Vector Symbolic Architectures (VSA) field as well as to 
current brain research are also provided.  

Results. The concept of distributed data representation is outlined, including HDC/VSA 
that are capable of representing various data structures. The developed paradigm of Associa-
tive-Projective Neural Networks is considered: codevector representation of data, superposi-
tion and binding operations, general architecture, transformation of data of various types into 
codevectors, methods for solving problems and applications.  

Conclusion. An adequate representation of data is one of the key issues within the Artifi-
cial Intelligence. The main area of research reviewed in this article is the problem of repre-
senting heterogeneous data in Artificial Intelligence systems in a unified format based on 
modeling the neural organization of the brain and the mechanisms of thinking. The approach 
under development is based on the hypothesis of distributed representation of information in 
the brain and allows representing various types of data, from numeric values to graphs, as 
vectors of large but fixed dimensionality.  

The most important advantages of the developed approach are the possibility of natural 
integration and efficient processing of various types of data and knowledge, a high degree of 
parallel computing, reliability and resistance to noise, the possibility of hardware implemen-
tation with high performance and energy efficiency, data processing based on associative 
similarity search — similar to how human memory works. This allows one to unify the meth-
ods, algorithms, and software and hardware for Artificial Intelligence systems, increase their 
scalability in terms of speed and memory with an increase in data volume and complexity.  

The research creates the basis for overcoming the shortcomings of current approaches 
to the specialized Artificial Intelligence based on Deep Neural Networks and paves the way 
for the creation of Artificial General Intelligence.  
Keywords: distributed data representation, associative-projective neural networks, codevec-
tors, hyperdimensional computing, vector symbolic architectures, artificial intelligence. 

INTRODUCTION  

The current progress in the field of specialized Artificial Intelligence is associated with 
the use of Deep Neural Networks. However, they have a number of disadvantages: the 
need for huge data sets for learning, the complexity of learning procedures, excessive 
specialization for the training set, instability to adversarial attacks, lack of integration 
with knowledge of the world, problems of operating with structures known as binding 
or composition problem. Overcoming these shortcomings is a necessary condition for 
advancing from the specialized Artificial Intelligence to the general one, requiring the 
development of alternative approaches.  

In 1960s, Nikolai M. Amosov formulated a hypothesis [1] about the mechanisms 
of information processing by the human brain that produce intelligent behavior. Those 
ideas were further developed in his subsequent works, including [2–5]. In fact, an ap-
proach was proposed to create Artificial Intelligence based on modeling the principles 
of human thinking and neural network organization of the brain. To develop and im-
plement the approach, at the turn of the 1960s, the Department of Biological Cybernet-
ics was founded at the Glushkov Institute of Cybernetics. Since 1997, the work of 
Amosov's school has continued at the department of Neural Information Processing 
Technologies of the International Research and Training Center for Information Tech-
nologies and Systems of the National Academy of Sciences and the Ministry of Educa-
tion and Science of Ukraine (the International Center). 
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Fig. 1. The B-512 neurocomputer that had a 512-bit 
machine word length. 

Initially, the developments of localist semantic M-networks [2–5] and assem-
bly Hebb-like neural networks were carried out in parallel at the Amosov's depart-
ment, resulting in the world's first autonomous robot controlled by neural networks 
in a natural environment [3]. In the late 1980s, Ernst M. Kussul proposed the foun-
dations of the original paradigm of the Associative-Projective Neural Networks 
(APNNs) [5, 6]. The idea was to combine the hierarchical organization of Amo-
sov's world model with the advantages of distributed representations, as well as 
with Hebb's cell assemblies. For the efficient implementation of APNNs, as a result 
of two projects in Japan jointly with Wacom, high-performance specialized neuro-
computers were created using the Japanese element base, see Fig. 1. This develop-
ment entered the history of Ukrainian informatics.  

The article presents an overview of the research that have been carried out at 
the International Center for 25 years in the direction of developing the ideas of 
N.M. Amosov and his scientific school. Therefore, it is important to emphasize 
that this article is focused heavily on the results obtained from a single research 
group and, hence, it does not give the full credit to the related ideas and methods 
developed by other groups. We highlight some connections to Hyperdimensional 
Computing (HDC) and Vector Symbolic Architectures (VSA), as well as to brain 
research, however, for a comprehensive treatment of HDC/VSA and its connec-
tion to APNNs the readers are kindly referred to [7, 8].  

DISTRIBUTED DATA REPRESENTATIONS  

To represent data of various type, modality, and complexity, APNNs use distrib-
uted representations. They are based on modeling a “distributed” or “holo-
graphic” representation of information in the brain, as an alternative to “localist” 
representations [9]. In localist representations, each “object” (for example, a 
feature, a physical object, a relation, a complex structure, etc.) corresponds to a 
certain node (neuron), represented by a vector component, the dimension of 
which is equal to the number of neurons. In the distributed approach, an object is 
represented as “distributed” over a set of neurons. Distributed representation is a 
form of vector representation where each object is represented by a subset of 
vector components, and each vector component can belong to representations of 
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many objects. In distributed representation, the state of individual components of 
representation cannot be interpreted without knowing the states of other repre-
sentation components. To be useful in applications, the distributed representa-
tions of similar objects must be similar (by some measure of similarity of the 
corresponding vectors — for example, by the value of the dot product or cosine 
of the angle between the vectors).  

Distributed representations possess the following advantages:  
– high information capacity. For example, if one object is represented by M 

binary components of a D-dimensional vector, then the number of representable 
objects is equal to the number of combinations M from D, in contrast to D/M in 
localist representations;  

– direct access to the representation of the object. A distributed representa-
tion of a complex structure can be processed directly, without tracing pointers or 
connections required in symbolic or localist representations;  

– an explicit representation of similarity. Similar objects have similar repre-
sentations that can be directly compared using efficiently computable vector 
similarity measures (e.g., dot product, Minkowski distance, etc.);  

– a rich semantic basis, which is provided through the direct use of represen-
tations based on features and the possibility of representing the similarity of the 
features themselves in their vector representations;  

– for many types of distributed representations – the ability to recover the 
original representations of objects;  

– the ability to work in conditions of noise, malfunction, and uncertainty, as 
well as neurobiological plausibility.  

Since distributed representations of various objects are vectors, a rich arsenal 
of methods developed for vector data can be applied to their processing.  

It was believed that the main disadvantage of distributed representations is the 
inability to represent the structure [10]. However, various researchers have devel-
oped a number of “structure-sensitive” distributed representations in various for-
mats [10–13]. Such distributed representations are called hypervectors, and models 
based on them are called Hyperdimensional Computing (HDC) or Vector Sym-
bolic Architectures (VSA) [7, 8]. The dimension of hypervectors is large, usually 
more than 1000, and reaches hundreds of thousands or more. The main operations 
on hypervectors are superposition, used to combine multiple hypervectors, and 
binding, used to associate them in representing structures. In various hypervector 
models, these operations are implemented in different ways, but the dimensionality 
of hypervectors at the input and output of these operations does not change.  

THE ASSOCIATIVE-PROJECTIVE NEURAL NETWORKS  

In APNNs, we use binary hypervectors with components from {0,1}. Moreover, 
those are sparse vectors, that is, the proportion of their non-zero components is 
small. This data representation format allows an efficient processing. Histori-
cally, and to distinguish from other hypervector types, we call such hypervectors 
as “codevectors”, and will use the term throughout the text of this article.  

As a superposition operation, component-wise disjunction of codevectors is used. 
When a set of codevectors is represented by a component-wise disjunction, the pres-
ence of some single component in the resulting codevector is determined by the 
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Fig. 2. Binding via the Context-Dependent Thinning. Smaller ovals represent 
the 1-components of the codevectors A, B, C. Larger ovals show the codevec-
tors 〈A ∨ B〉, 〈B ∨ C〉, 〈A ∨ C〉 bound by CDT. Circles XY denote the subset 
of 1s preserved in the codevector X when Y is also present. It can be seen 
that, e.g., AB and AC are different subsets of A. Note that actually the 
1-components belong to randomly generated codevectors. 

presence of such a component in at least one codevector of the set. Thus, the individual 
components do not contain information about the combination of codevectors in the 
set. Binding operations are used in HDC/VSA to preserve this information.  

For binding codevectors, Context-Dependent Thinning procedures were pro-
posed [10]. In one version of this procedure, the bound codevector 〈Z〉 is formed 
from the codevectors Xi to be bound as follows: 

Z = ∨i Xi; 〈Z〉 = ∨k=1,K ( Z ∧ Z~(k) ) = Z ∧ ∨k=1,K Z~(k). 

Here Z~(k) is Z with permuted components. For each k, a random independ-
ent permutation is used which is fixed for the specific k. It is also possible to use 
the same permutation multiple times. 

The subset of 1-components of each codevector Xi that is preserved in 〈Z〉 
depends on Z, and hence on each and all Xi, as shown in Fig. 2. Thus, informa-
tion is stored about a specific set of elements of the set, the codevectors of which 
participated in the formation of 〈Z〉, ensuring binding.  

The number K of used permutations controls the number of 1-components in 
the final 〈Z〉. Thus, it is possible to normalize the number of 1s, i.e., degree of 
sparsity, in the resulting codevector. Note that the operation of component-wise 
conjunction also provides binding, but increases the degree of sparseness of the 
resulting codevector, that might be an undesirable feature of binding operation.  

The general APNN architecture. The APNN architecture was proposed 
and developed in [6, 14–18]. It is generally recognized that for a reasonable 
common-sense behavior, an intelligent agent needs a model of the world that 
includes knowledge specific to the subject area, as well as information about 
the agent itself. Such a model allows the agent to understand the world and 
helps it in its interaction with the world, for example, by predicting the results 
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of actions. The goal of developing APNNs is to offer an approach to create a 
complex hierarchical model of the world that supposedly exists in the brain of 
humans and higher animals, as a step towards the Artificial General Intelli-
gence. Two types of hierarchy are considered in APNNs: compositional (part-
whole), as well as classification or generalization hierarchy (class-member or 
is-a). An example of a compositional hierarchy: letters → words → sentences 
→ paragraphs → text. An example of a classification hierarchy: apple → big 
red apple → this big red apple in the hand. 

The APNN model of the world is based on models of objects of various modali-
ties, including sensory (visual, acoustic, tactile, motor, etc.) and more abstract modali-
ties (linguistics, planning, reasoning, abstract thinking, etc.), which are hierarchically 
organized. Models should exist for objects of different nature, for example, events, 
objects, feelings, features, etc. Models (their representations) of different modalities can 
be combined, which leads to multimodal representations of objects and their associa-
tions with behavioral schemes (reactions to objects or situations), see [6, 14–18]. 

The APNN architecture is based on fixed-dimensional codevectors for objects of 
varying complexity and generality, which represent various heterogeneous data types, 
for example, numeric data, images, sequences, graphs (Sec. 4). Codevectors can be 
formed “on the fly” (without training). APNNs have a multi-module, multi-level and 
multi-modal structure, see Fig. 3 and [18] for more details. The modules are connected 
by the bundles of projective one-to-one connections that just copy codevectors between 
the modules. The architecture includes the modules of independent modalities and sub-
modalities. For example, independent visual features of an object such as shape, size, 
texture, color are represented by codevectors in the modules M11...M14. A codevector 
of a visual model of an object is formed from these feature codevectors in the module 
M21. In the modules M22...M25, the codevectors of acoustical, tactile, olfactory, taste 
models are formed. The codevector of an integral multi-modality sensory model of an 
object is formed in the module M31, to which its name codevector could be added 
from the module M32. Probably, name could be a feature in the models of all modules. 

 
 

Fig. 3. An example of the APNN architecture.  
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The modules form, store and process a set of codevectors representing object 
models of a certain modality and a certain level of the compositional hierarchy. Mod-
ule's codevectors are constructed from codevectors obtained from other modules, 
such as lower-level modules of the same modality, or from modules of other modali-
ties. The lower level of the compositional hierarchy consists of modules that provide 
interface (of representations) with the external environment. A codevector is similar 
to the codevectors of its elements of the lower levels of the compositional hierarchy, 
as well as to the codevectors of higher levels, for which the codevector is an element. 
Thus, using similarity search in the memory of lower- and higher-level elements, it is 
possible to recover both the codevectors of the elements of lower levels and the com-
positional codevectors of higher levels. Similarity search in the memory of single 
module allows finding similar objects.  

So, each module should have a long-term memory where it stores its codevectors. 
It was proposed to use distributed auto-associative memory of the Hopfield type as the 
module’s memory [19, 20, 21, 22]. Let us consider it in some more details.  

Associative memory and the generalization hierarchy. One of the key 
modes of processing codevectors is similarity search, i.e., search in the database 
(set) for a codevector most similar to the query codevector. This can be effectively 
done using a neural network distributed auto-associative memory with binary con-
nections (an auto-associative version of the Willshaw memory). Each memory 
neuron (corresponding to the codevector component) is connected to all other neu-
rons by a connection with a weight of 0 or 1. Each codevector is memorized ac-
cording to the binary version of the Hebbian rule: the weight of the connection 
between memory neurons corresponding to the 1-components of the codevector is 
set to 1. If the weight of the connection is already 1, it does not change. 

After the set of codevectors is memorized, a codevector-query is given as the in-
put, which may not belong to the stored set of codevectors (for example, it may include 
only a part of the known components of the codevector and/or noise). It is multiplied 
by the matrix of connections with a subsequent binarization by comparison with the 
threshold. The result is again fed into the input. After several such iterations of evolv-
ing the memory, the output codevector is retrieved which is the codevector from the 
memorized set that is most similar to the input codevector.  

We have developed a method for analyzing the characteristics of such a 
memory [20, 21, 19]. For a wide range of codevector dimensionality, the degree 
of sparsity, and the level of distortion of codevectors-queries, it was shown that 
the accuracy of the obtained estimates of information characteristics exceeds the 
accuracy of the Gibson-Robinson method, and the maximum information effi-
ciency of this memory (per bit of connection implemented in computer memory) 
is higher than that of the Hopfield network.  

Note that the studied learning rule does not allow using this auto-associative 
memory for generalization. According to Hebb's ideas about cell assemblies, active 
neurons often found together (corresponding to 1-components of codevectors), when 
learning by increasing the weight of connections between them, form the “cores” of 
assemblies, i.e., strongly connected subsets of neurons that fire together more easily. 
This may correspond, for example, to typical category features and prototype objects. 
And vice versa, rare combinations of active neurons form a “fringe” corresponding, 
for example, to features of specific objects, see [19]. To implement this, connections 
between neurons should be not binary, but gradual, as in the Hopfield network. An-
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other option is to use not a deterministic, but a stochastic learning rule, in which the 
weight of the connection between 1-components changes with a certain probability, 
which is set by the “learning rate” parameter [14].  

Modeling the formation of cores and fringes in distributed auto-associative mem-
ory has so far been investigated only fragmentarily. The same applies to the use of such 
memory for codevector representations of sequences and structures (but see [16]). 
These topics are a promising direction for further research [14, 16, 23]. 

The part-whole hierarchy. In APNNs, the formation of the codevector of 
an object-whole from the codevectors of its objects-parts or objects-features is 
performed by superposition or Context-Dependent Thinning operations. A num-
ber of questions remains open:  

• how to extract objects and their parts of different hierarchical levels?  
• how to determine which hierarchical level an object belongs to?  
• how to work with an object that can belong to different levels of the hierar-

chy and modules?  
In this regard, it is of great interest to explore possible parallels with how 

this is done in the brain. 
It was shown in [24], that the representation of composite objects is different 

from the representation of their parts, and there exists a representation in the 
brain that corresponds to a combination of parts. Moreover, in the process of 
learning new objects a representation of the object appears which is processed as 
easily as the representation of a separate feature (so-called unitization).  

In [25], a memory model is confirmed in which both the features of the ob-
ject and the object in the form of bound features are presented. Moreover, the 
features of an object can be bound not only through their common position, but 
directly with each other. In addition, it has been found that unbound features can 
be represented with greater resolution than when they are bound. 

In [26], a hierarchy of episode representations is considered, in which the 
levels of objects, events, and narratives are distinguished. Moreover, the repre-
sentations of both objects and events also have a hierarchical structure: there 
exists a representation of both the object-whole and its features [25], and events 
are represented both by their details as well as by coarser global information. 
Perhaps there are different mechanisms at work to memorize these different lev-
els of hierarchy. This is manifested in the different nature of forgetting: events 
are forgotten as a whole, and objects can be forgotten partially, by separate fea-
tures. In addition, more generalized information is memorized better than details.  

Experiments in [27] made it possible to propose an episode recall model in 
which events can “scroll” forward until the beginning of the next event. In [28], it 
was experimentally shown that the representation of an object can be bound with 
both time and position. 

The key problem for APNNs is the segmentation of objects (events) into 
parts and wholes. Progress in its solution can be facilitated by data on the solu-
tion of such tasks by the brain. It was shown in [29] that neural states at the upper 
levels of the hierarchy are activated longer than their parts from the lower levels. 
This is consistent with the APNN architecture.  

When modeling the brain, the representation of spatial structures is usually 
considered in terms of either cognitive maps or cognitive graphs (see review 
[30]). In cognitive maps, locations are given by coordinates, and the relationships 
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between them can be viewed in terms of angles and distances, as on a map. In 
cognitive graphs, only some positions are given by nodes, and the edges between 
them are path segments, with no information about position or orientation rela-
tive to the global coordinate system. Only the topology can be specified (nodes 
are connected, but the path can be winding) or also labels (distances, directions, 
angles for existing edges). In [30], it is proposed that representations in the form 
of cognitive maps and graphs can exist simultaneously, complementing each 
other, and can also be used to represent not only spatial knowledge. In APNNs, 
representations of both these data types has been developed [31–33], that can be 
used both for brain modeling and in practical problems.  

Some connected research directions. The representations and basic opera-
tions in HDC/VSA provide Turing-completeness. In [34–37], a paradigm differ-
ent from HDC/VSA that operates with distributed representations is proposed, 
which is also Turing complete. It is formulated in terms of Hebb assemblies and 
focuses on the direct handling of assemblies in memory.  

To create a “copy” of assembly in a target area (projection operation), a pat-
tern of active neurons is formed in it by randomly projecting the activity pattern 
of the assembly from the original area and selecting the most active neurons. 
Note that we considered a similar transformation in [38–41], see also [42]. Then 
the resulting pattern of active neurons forms a new assembly using variants of the 
Hebbian rule. This process is complicated by the possibility of modifying the 
connection weights of a random projection and spreading activity along connec-
tions in the target area.  

The possibility of back projection is also considered with modification of 
projection connections from the second area to the first one (bind operation), and 
merging of assemblies from the two areas to the third one. The last two opera-
tions can be used to form assemblies of structures, being analogous to binding 
and superposition in HDC/VSA. It is interesting to explore how the capabilities 
of this paradigm relate to the HDC/VSA models, both in terms of applications 
and biological relevance.  

Sketches (see [43–46] and references therein) are compressed representations of 
data. In [47–48], it was proposed to combine sketches with Deep Neural Networks. 
Both the formation of sketches of hierarchical structures and the use of memory based 
on locality-sensitive hashing ([43–46] and references therein) for fast similarity search 
at each layer of Deep Neural Networks are considered. Random projection is used to 
form the sketch. The authors of [47–48] consider the problems of recovering input 
sparse vectors and random matrices themselves, using the projection results. The sparse 
recovery methods and dictionary learning are used. On the one hand, this aims to over-
come the limitations of HDC/VSA related to the lack of learning. On the other hand, 
this complicates the scheme and introduces additional restrictions related to the forma-
tion and handling of sketches.  

A theoretical analysis of binding operations other than CDT is considered in [49].  

INPUT DATA TRANSFORMATIONS  

The key problem in using codevectors to solve practical problems is to obtain them 
from the input data in such a way that similar codevectors correspond to similar input 
data (objects). We have developed such transformations for various types of data.  
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Sets (i.e., collections of elements without specifying an order or other struc-
ture) have the simplest codevector representation. Each element of the set is as-
signed a randomly generated codevector. The codevector of a specific set consist-
ing of specific elements is obtained by superposition (component-wise disjunc-
tion). Sets containing the same elements will have similar codevectors. The 
greater the proportion of identical elements, the greater the similarity. 

Numeric data. Numeric data — scalars and vectors — are perhaps the most 
common data type. We have developed and investigated three types of methods 
for transforming real vectors a ∈ ℜD into codevectors A ∈ {0,1}d.  

1. Receptive fields-based methods [45, 46].  
The components of a codevector are formed by determining whether the in-

put vector belongs to the receptive fields corresponding to the components of the 
codevector: Ai = ψi(a), i = 1,...,d, where Aj are the binary components of the 
codevector A, ψi(a) is the indicator of the vector a location in some region of the 
input space, i.e., in the i-th receptive field.  

The developed and investigated methods use hyperrectangular receptive fields 
with random boundaries in random subsets of the dimensions of the input space. This 
allows a computationally efficient determination of whether a vector belongs to a 
receptive field by comparison with the boundary values of the field in each of its 
dimensions. Significant overlap of codevectors of close input vectors is provided due 
to the presence of a large number of common receptive fields, i.e., due to the vectors 
falling into a large number of the same receptive fields.  

2. Random projection-based methods [43, 44, 46].  
The codevector A is formed by a random linear projection of the input vector 

a using a random matrix R(d × D) and binarization of the resulting vectors by a 
component-wise non-linear threshold function T: A = T(Ra), see Fig. 4. Note that 
both d >> D and d << D could be the case. Here the matrix R is a random matrix 
with elements from a sub-Gaussian distribution. In particular, the Gaussian dis-
tribution, ternary one with elements from the set {–1, 0, 1}, and binary one with 
elements from {0, 1} were studied. Such a transformation can be performed us-
ing a perceptron-like neural network with randomly selected connections. 
Threshold for non-linearity does not have to be zero, and it allows controlling the 
sparseness of the generated codevectors. Significant overlap of codevectors of 
close input vectors is provided by a large value of their dot product with the same 
random vectors — rows of a random matrix. Random projection properties allow 
estimating the cosine of the angle and the angle of the input vectors from such 
codevectors. Estimating the Euclidean distance and dot product requires knowl-
edge of the Euclidean norms of the input vectors. A similar neural network archi-
tecture was found in the olfactory system of the Drosophila fly [42, 50, 51]. 
Related problems were also studied in [52, 53].  
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Fig. 4. A single layer perceptron for transformation of 
vector data by a random projection with a threshold.  

3. Compositional methods [44, 45, 54].  
For each value of each component-scalar a(j), j = 1,...,D, of the input vector 

a with integer components, a codevector is formed, with similar codevectors 
corresponding to close values of the scalars, and dissimilar ones corresponding to 
distant values. The codevector A of the input a is formed from the codevectors 
Aja(j) of the values of its components-scalars a(j) как A = 〈A1a(1), A2a(2),..., ADa(D)〉, 
where 〈⋅〉 is the CDT operation. A degenerate case of binding is the component-
wise disjunction, in which case, in fact, binding does not occur. The dimension of 
codevectors for scalars and vectors is the same. Significant overlap of codevec-
tors of close input vectors is ensured by constructing them from similar codevec-
tors of the values of their components.  

For some of these methods, the dependence of the probability of coincidence 
of the components of the codevectors on the value of the components of the input 
vectors was obtained, providing the similarity function that can be estimated 
from the dot product of the codevectors.  

For all three types of methods, an analysis of the characteristics of codevectors 
was carried out, which makes it possible to choose their parameters in applications. 
Note that the non-linearity of the transformation of the input space into codevectors 
makes it possible to use linear models to solve nonlinear problems using codevectors.  

The codevector representation of vector data is used not only in similarity 
search and classification problems (Sec. 5). We note the use of the method of 
receptive fields for continuous optimization [55, 56] and the method based on 
random projection in problems of decentralized flows [57].  
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Neural regularization approach. Numerical methods used to process vec-
tors and matrices in statistics, machine learning, and inverse problem theory 
often turn out to be inefficient for large dimensions. This manifests itself both 
in an increase in computational costs and in the loss of stability of solutions. 
A productive approach to overcome these problems is the randomization ap-
proach. It allows not only to reduce computational costs when searching for 
solutions, but also, as it turned out, to give stability to numerical methods, see 
also [58–61].  

To improve the stability and accuracy of solving discrete ill-posed inverse 
problems (DIP), we have developed new methods of neural regularization based 
on random projections, as well as on the basis of matrix expansions. The methods 
use an integer regularization parameter that determines the complexity of the 
linear model. Computable criteria have been developed for choosing the value of 
the regularization parameter that is optimal from the point of view of the accu-
racy of solving a discrete ill-posed problem, i.e., of the recovery of an unknown 
input signal. The application of the developed methods provides not only the 
stability and accuracy of the solution, but also reduces the computational com-
plexity of the regularization. Our studies of the regularizing properties of random 
projections started in 2009 [62] and were further developed in [63–67].  

An approach and methods for solving DIP based on random projection have been 
developed. To do this, it was proposed to left-multiply both parts of the approximate 
equation Ax = y by a random matrix Rk∈ℜk×N with the number of rows k less than N. 
The vector of the recovered signal is obtained by multiplying the pseudo-inverse matrix 
(RkA)+ by the right part Rky of the new equation. An experimental study of this basic 
method showed that averaging over random matrices leads to smoothing of the de-
pendence of input and output recovery errors on k, as well as to a decrease in the num-
ber of local minima. As a result, it is easier to find the optimal value of k. This leads to 
a reduced computational complexity by restricting the search to kopt+1 (kopt < N) values 
of the criterion that allows getting optimal k (instead of calculating all N values of the 
criterion). In addition, the error of the recovery of the input vector is reduced relative to 
the case without averaging.  

This gave us reason to believe that analytical averaging over random matrices can 
give the same useful result. The analytical averaging allowed us to propose a method of 
the “Deterministic Random Projection” for solving DIP, the error of which is always 
less than the error of the basic random projection method. Namely, the recovery of the 
input vector was proposed to be carried out as yUUDAx ΤΤ= k

~  [66], leading to error 
reduction by the value of variance that appears due to multiplication by a random ma-
trix. Here Dk is a diagonal matrix of special kind corresponding to Rk, see [66], U (and 
V below) is the matrix of the left (and right) singular vectors.  

It was shown that the considered methods of solving DIP (the Tikhonov 
regularization, the Truncated Singular Value Decomposition, and the Determinis-
tic Random Projection) weigh reciprocal singular values differently when obtain-
ing the solution vector. The expression for estimating the input vector in the gen-

eral case has the form yUVx Τ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= i

i

w
s

diag 1* . For the Tikhonov regulariza-

tion, it is known that the weights decrease gradually:  
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Fig. 5. Examples of the weights of the reciprocal singular values when estimating the 
input vector by the Tikhonov (w_tikh), the Deterministic Random Projection (w_drp), 
and the Truncated Singular Value Decomposition (w_tsvd) types of regularizations.  
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Here dki are the diagonal elements of Dk. So, the values of the weights gradu-
ally decrease with the increasing index of the singular value, see Fig. 5. This is 
similar to the behavior of weights for the Tikhonov regularization and provides a 
potentially higher accuracy compared to the Truncated Singular Value Decompo-
sition, due to a better signal approximation.  

Structured data. A number of methods for codevector representation of 
data with the sequence structure have been developed in [68, 69, 31]. They are 
based on the formation of codevectors which represent the elements of a se-
quence according to their positions. These codevectors are combined into a code-
vector of the whole sequence either by a superposition operation (component-
wise disjunction) or by a binding operation. A widespread variety of sequences 
are strings, where the elements are symbols at sequential positions.  

The following approaches have been developed to represent sequence ele-
ments taking into account their position:  

1) multiplicative binding of codevectors of sequence elements with codevec-
tors of their positions, as well as with codevectors of context elements [70, 16];  

2) the use of permutations of codevectors of sequence elements to represent 
their order [71, 12]; 

3) representation by means of codevectors of n-grams (i.e., n consecutive 
elements) of a sequence [69, 72].  
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In the first approach, to represent identical or similar sequence elements at 
close positions with similar codevectors, correlated codevectors have been pro-
posed as codevectors for close positions. In the second approach, to preserve the 
similarity of element codevectors at close positions, it was proposed in [73] to 
use partial (correlated) permutations. In the third approach, the representation of 
n-grams and whole strings by multiplicative binding of symbol codevectors per-
muted according to their position was proposed in [74]. In [69], it was considered 
how to approximate the edit distance of strings by vectors of frequencies of dif-
ferent n-grams, allowing a codevector implementation.  

The recently proposed methods [31, 75] made it possible to form similar codevec-
tors for sequences with similar elements at close positions. These methods, in contrast 
to the previous ones, allow obtaining codevectors of transformed (shifted) sequences 
not only by their formation from the transformed sequences, but also by transforming 
the codevector of the original sequence (the equivariance property).  

In addition to the 1D case of sequences, several approaches have been de-
veloped for the codevector representation of objects with a two-dimensional 
structure, such as 2D images.  

In the role-filler approach, codevectors of positions are formed in such a way that 
similar codevectors correspond to close positions. The features extracted from the im-
ages are also associated with codevectors. A feature at its position is represented as a 
codevector obtained by binding the codevectors of the feature and its position. The 
codevector of the entire image is obtained by superposition of the codevectors of all 
extracted features at their positions. Such codevector representations are similar for 
images that contain similar features at similar positions. 

In the permutation-based approach, the representation of the feature codevector at 
its position is performed by permutations, and the resulting codevectors are superim-
posed to represent the entire image. The use of partial permutations makes it possible to 
ensure the similarity of codevectors of a feature at close positions [73].  

Arbitrary binary features can be used as features. So, for the direct formation 
of codevectors from images, special binary LIRA features were proposed [76, 
77]. For binary images, each LIRA feature is an indicator of the presence of 1/0 
pixels at randomly selected positions of a randomly located local window. For 
gradual images, the brightness of pixels is compared against randomly selected 
thresholds. Each LIRA feature corresponds to a codevector component. The pa-
rameters are chosen so that the image usually contains a small fraction of the 
entire set of features, i.e., codevector is sparse.  

The RLD features (Random Local Descriptors) can be considered as the de-
velopment of LIRA features. In the RLD approach [73], the same set of features 
is extracted at each “interesting” point in the image. Each feature is assigned a 
random codevector. Features at their positions are represented by partial permu-
tations of the corresponding codevectors. As a result, features at close positions 
produce similar codevectors. Due to this, RLD improves the results of LIRA in 
classification problems. Currently, methods for generating image codevectors are 
being developed that provide equivariance to some image transformations.  

Complex structured data, such as hierarchically organized graphs of knowledge 
base episodes, are initially described by systems of hierarchically organized objects 
and relations. Based on the approaches from the previous sections, a number of 
methods for codevector representation of such data have been developed, their basic 
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blocks being codevector representations of relations. The codevectors of relations are 
recursively transformed into codevectors of complex hierarchical structures contain-
ing higher-order relations [10, 11, 18, 32, 33]. The codevectors of structures have the 
same dimension as the codevectors of their elements.  

Consider an example of the Solar System episode representation (please see de-
tails in [33]) shown in a bracketed notation in Fig. 6 and as a graph sketch in Fig. 7. It 
includes objects Sun, Planet; attributes Mass, Temperature; relations Gravity, At-
tracts, Greater, Revolve-Around, And; higher-order relations Cause. Relations have 
arguments; the relation's name together with the particular arguments form the in-
stance of a relation. For many types of relations, the order of arguments is essential. 
So, a relational instance can be described by roles specific to the relation and in-
stances of arguments that fill them. To form the codevector of a relational instance, 
the role-filler approach uses a multiplicative binding of the role and filler codevectors 
to indicate which role the filler is assigned to in a relation (e.g., the second role in 
Greater is filled with a smaller object instance). The codevector of the whole episode 
is formed as shown in Fig. 8. In the predicate-arguments approach, random permuta-
tions of the codevectors of the arguments of a relation are used to represent their 
order, as in the representation of sequences.  

 (CAUSE  
(GRAVITY (MASS SUN) (MASS PLANET))  
(ATTRACTS SUN PLANET) ) 

(GREATER ( TEMPERATURE SUN)  
( TEMPERATURE PLANET) )  

(CAUSE  
(AND  (GREATER (MASS SUN)  

(MASS PLANET) ) 
 (ATTRACTS SUN PLANET) ) 
(REVOLVE-AROUND PLANET SUN) ) 

 
 

Fig. 6. Bracketed notation description of the Solar System episode  
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Fig. 7. Graph description of the Solar System episode. 
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SOLAR_SYSTEM =  
〈 CAUSE_1 ∨ 〈GRAVITY_1 ∨ 〈MASS ∨ SUN〉 〉 ∨ 〈GRAVITY_2 ∨ 〈MASS ∨ PLANET〉〉 〉 
∨ 〈CAUSE_2 ∨ 〈ATTRACTS_1 ∨ SUN〉 ∨ 〈ATTRACTS_2 ∨ PLANET〉 〉 
∨ 
〈 GREATER_1 ∨ 〈TEMPERATURE ∨ SUN 〉〉   
∨ 〈 GREATER_2 ∨ 〈TEMPERATURE ∨ PLANET〉 〉  
∨ 
〈 CAUSE_1 ∨  
      〈 AND ∨ 〈GREATER_1∨〈MASS∨SUN〉〉 ∨ 〈GREATER_2∨〈MASS∨PLANET〉〉 〉 
   ∨ 〈 AND ∨ 〈ATTRACTS_1 ∨ SUN〉 ∨ 〈ATTRACTS_2 ∨ PLANET〉〉 〉 
∨ 〈 CAUSE_2 ∨  
     〈 REVOLVE-AROUND_1 ∨ PLANET〉 ∨ 〈REVOLVE-AROUND_2∨SUN〉 〉 

 
 

Fig. 8. Codevector representation of the Solar System episode. 
 
The similarity of codevectors of similar complex structured data is ensured 

by the similarity of the codevectors of their elements and the properties of bind-
ing operations. As a result, for structures with similar objects and relations, the 
created methods ensure the production of similar codevectors. Thus, by finding 
the similarity of the codevectors of relational structures using some vector simi-
larity measure of vectors (for example, the dot product), we simultaneously 
evaluate the similarity of structures and the similarity of objects in these struc-
tures. This provides the basis for the creation of computationally efficient and 
qualitatively new methods for processing relational structures of data- and 
knowledge bases, which are based on similarity and simultaneously take into 
account both the structure and semantics of knowledge.  

METHODS  

Based on the proposed approaches, methods for solving various types of problems 
from the field of Machine Learning and Artificial Intelligence have been developed.  

The approach of “example-based reasoning” [45, 46] is productively used by 
humans when solving problems of natural intelligence; it is also used for solving a 
wide range of problems in Artificial Intelligence systems. For inferences about a 
query (an input object or a situation), this approach uses a search for similar known 
objects or situations with which additional information is associated. In computer 
implementation, a base of objects-example is formed, i.e., a memory containing the 
past “experience” of the system. Examples found by similarity search in memory can 
be used directly, or as a source of additional information about the input object-
query. One example of using this approach to solve classification problems is the 
nearest neighbor method, where the class label of the nearest (by some measure of 
similarity) example from the memory is transferred to the query. Another example is 
a linear classifier, where for each class, in the process of learning a vector representa-
tion of the generalized example is formed, and the classification is performed by 
choosing the class whose generalized example gives the maximum value of the dot 
product with the vector representation of the query.  

The effectiveness of applying the example-based reasoning approach to solv-
ing problems depends on how the similarity between examples is defined. When 
using codevectors, this, in turn, depends on the methods of their formation and 
the applied similarity measures of codevectors. We also note the existence of 
efficient algorithms for fast similarity search [78, 79, 46].  
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The developed methods of codevector representation of data of various types 
make it possible to solve classification problems using linear vector classifiers. In par-
ticular, for vector data, often the class boundaries are not linearly separable. However, 
non-linear data transformation to codevectors overcomes this problem. Combining a 
specific transformation of input data into codevectors with a specific type of linear 
classifier yields a new version of the classifier [80–84]. The best-known linear classifi-
ers are perceptrons and Support Vector Machines. We have proposed a perceptron with 
a large margin that approximates the results of Support Vector Machine, but is trained 
incrementally and fast [84]. As mentioned above, other types of classifiers can be used, 
such as the nearest neighbor classifier.  

The architecture of a modular neural network with an assembly organization 
has been developed that can be considered as a generalization of the perceptron 
classifier [83]. Each module corresponds to a class. In the fully connected ver-
sion, each neuron is connected by trainable connections with all other neurons of 
the module, and in the non-fully connected version, with a randomly selected 
subset of neurons. Learning is performed similarly to the perceptron learning 
rule, i.e., by increasing the weights of connections between active neurons in the 
module corresponding to the correct class, and decreasing the weights of connec-
tions in the module of the wrong class. In the recognition mode, neural activity is 
propagated along the connections in each module, and the activity of the module 
is calculated as the total sum activity of the module's neurons. The module with 
the highest activity determines the winning class.  

Also, the architecture of a layered neural network with competitive layers for im-
age processing has been developed. Each layer corresponds to a certain class of images 
and is a separate neural network. Neurons from different layers have a one-to-one cor-
respondence with each other and with the 2D input retina. There is a competition be-
tween the corresponding neurons of all layers resulting in the activation of single most 
active neuron among all layers in each retina’s position. Such networks have been 
applied to the problems of classifying handwritten digits, texture segmentation, and 
extracting image segments of different orientations [85, 86].  

Concerning texture segmentation, a method has been developed for segment-
ing visual images into homogeneous regions of fine-grained texture [87, 88]. The 
peculiarities of the method are that it works without training, and no preliminary 
information about the analyzed image is required.  

Work is underway to use the developed methods in tasks related to Un-
manned Aerial Vehicles [89, 90].  

APPLICATIONS  

The effectiveness of the developed methods has been demonstrated by solving a wide 
range of applied problems. Upon the time of the original publications, a number of the 
results obtained were comparable to the state-of-the-art as indicated below.  

To take into account the semantics of textual information (words, texts and 
their fragments) presented in the form of frequency vectors of the joint occur-
rence of words and their contexts, methods for the formation of “context code-
vectors” have been developed. In the task of searching for textual information, 
due to taking into account semantics, the accuracy of the search was increased up 
to 20% on the text datasets Time, Cranfield, Medlars [91]. Context codevectors 
 have also been applied in tasks that require taking into account the semantic 
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similarity of words, including the search for synonyms and the choice of the 
proper target word in automatic translation.  

Strong performance has been obtained in solving problems of classification 
and segmentation of textures [15, 86], recognition of handwritten characters and 
words [84, 92], acoustic signals [81, 93], etc. In text classification, on the 
Reuters-21578 dataset the accuracy was increased to 0.937 corresponding to the 
best contemporary results. In predicting the sensitivity of a cancerous tumor of 
glioma to chemotherapy, the prediction accuracy was improved to 88.5% com-
pared to less than 81% for other methods. A classification accuracy of up to 
99.5% has been achieved on the MNIST handwritten digits dataset [73, 76, 77, 
84, 92]. It was shown that for a small feature set, a non-fully connected modular 
network improved the results of the perceptron classifier.  

A high-precision system for recognizing a speaker by voice in noisy condi-
tions has been created [93]. The individual features of the voices were fixed in 
the structure of the neural network in the process of training neural network clas-
sifiers. The network automatically generated individual portraits of voices as a 
collection of speech features. The system worked both in search mode in voice 
databases and in real time. The reliability of identification of microphone signals 
was within 94%–98% and reached 85%–94% for phone signals. The technology 
worked with the datasets that included an arbitrary number of voice samples from 
various people recorded via microphone and phone channels. The ability to 
search for defined voices in many hours of audio recordings was also imple-
mented (audio data indexing).  

Codevector representations of data with the structure of sequences have been 
tested in the tasks of detecting spam and intrusions in computer systems, classifying 
coding regions of genes, predicting the structure of proteins, searching for text dupli-
cates, spellchecking, and modeling the visual similarity of words in humans [69, 31].  

The developed methods for generating codevectors of complex structured 
data that include relations (Sec. 4.3) were used in reasoning by analogy to effec-
tively search for analogs by similarity while simultaneously taking into account 
structure and semantics. The application of the proposed approach made it possi-
ble, on the ThinkNet knowledge base, to increase the search precision and recall 
up to 20% and 4 times, correspondingly [33]. In addition, methods for analogical 
mapping and inference were developed and tested.  

In the problem of predicting the existence of chemical compounds on the 
INTAS00-397 dataset, the obtained results [94] exceeded the best known ones.  

Due to the new methods of neural network regularization, systems with in-
creased accuracy have been developed for gamma spectrometry at fixed and non-
fixed measurement geometries [95], suppression of active interference [96], es-
timating the direction of signal arrival in antenna systems [97].  

CONCLUSIONS AND PERSPECTIVES  

The key issue in the problems of Artificial Intelligence is the adequate represen-
tation of data. The approach under development is based on the idea of distrib-
uted representation of information in the brain and allows representing various 
types of data, from numeric values to graphs, as vectors of large but fixed dimen-
sionality. The similarity of the initial data is manifested in the similarity of the 
resulting vectors. This makes it possible to apply similarity search in solving a 
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number of problems based on case-based reasoning, presumably similar to how 
the human brain does, and also allows using an extensive arsenal of existing vec-
tor machine learning methods for processing and analysis.  

We also develop theoretically substantiated feature extraction methods based on 
sparse multilayer neural network models and new approaches to regularization. The 
methods are applicable to data that allow both 1D and 2D representation, such as se-
quences (audio signals), 2D images, video sequence frames, and so on.  

Recently, well-known figures in the field of Deep Neural Networks, such as 
G. Hinton [98], J. Bengio [99], Y. Schmidhuber [100] proposed that new ideas 
are required to overcome the shortcomings of Deep Neural Networks. The sense 
of the new direction of research is to provide the ability to form and operate 
structures consisting of internal representations of objects, without learning such 
representations from scratch. The methods being developed by us are also aimed 
to achieve such properties of “compositionality”.  

The main area of research reviewed in this paper is the problem of represent-
ing heterogeneous data in a unified format for the Artificial Intelligence systems 
based on modeling the neural network organization of the brain and the mecha-
nisms of thinking hypothesized by Amosov. The most important advantages of 
the developed approach are the possibility of natural integration and efficient 
processing of various types of data and knowledge, a high degree of parallel 
computing, reliability and resistance to noise, the possibility of hardware imple-
mentation with high performance and energy efficiency, data processing based 
on associative search by similarity, similar to how human memory works. This 
allows one to unify methods, algorithms, software, and hardware for Artificial 
Intelligence systems, to increase their scalability in terms of speed and memory 
with an increase in data volume and complexity.  

Currently, the topical direction of our developments is the creation of vector 
distributed representations of objects that would allow their modification inside 
the Artificial Intelligence system so that the result coincides with the representa-
tion of the external objects after some (corresponding) transformations. This ap-
plies to techniques for equivariantly representing sequences, as well as spatial 
objects such as 2D images and higher dimensional representations, including 
making such representations equivariant to translation, rotation, and scale. Such 
representations may be considered as analogous to imagery in human thinking, 
and operating with them may be seen as a form of creative thinking.  

Another promising direction is the consideration of context. Many brain ex-
periments show that the context has a great influence on the memorization of 
objects, events, scenes, etc. In APNNs, context is taken into account by the bind-
ing of codevectors that is performed by Context-Dependent Thinning, as well as 
by permutation. It is interesting to test the hypothesis that binding an object's 
codevector and a particular context's codevector yields strongly context-
dependent representations of objects that do not allow the object to be recognized 
in another context. However, when an object is stored in many different contexts, 
a context-independent representation of the object is formed.  

We believe that the reviewed studies create the basis for overcoming some 
of the shortcomings of modern approaches to specialized Artificial Intelligence 
based on Deep Neural Networks and will contribute to the development of 
Artificial General Intelligence. 
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НЕЙРОМЕРЕЖЕВІ РОЗПОДІЛЕНІ ПОДАННЯ ДАНИХ 
ДЛЯ ШТУЧНОГО ІНТЕЛЕКТУ ТА МОДЕЛЮВАННЯ МИСЛЕННЯ  

Вступ. Сучасний прогрес у галузі спеціалізованого штучного інтелекту пов'язано з викорис-
танням глибоких нейронних мереж. Однак вони мають ряд недоліків: потреба у величезних 
наборах даних для навчання, складність навчальних процедур, надмірна спеціалізація навча-
льного набору, нестійкість до змагальних атак, відсутність інтеграції зі знаннями про світ, 
проблеми роботи зі структурами, відомі як проблема зв’язування або композиції. Подолання 
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цих недоліків є необхідною умовою для просування від спеціалізованого штучного інтелекту 
до загального, що потребує розроблення альтернативних підходів.  

Метою статті є огляд досліджень цього напряму, проведених у Міжнародному центрі 
протягом 25 років. Підхід до штучного інтелекту, що розробляється, випливає з ідей  
М.М. Амосова та його наукової школи. Також розглянуто зв’язки з напрямами гіпервекторних 
обчислень (HDC) та векторних символічних архітектур (VSA), а також з дослідженнями мозку.  

Результати. Викладено концепцію розподіленого подання даних, включаючи 
HDC/VSA, які здатні подавати різні структури даних. Розглянуто розроблену парадигму 
асоціативно-проективних нейронних мереж: кодвекторне подання даних, операції супе-
рпозиції та зв'язування, загальну архітектуру, перетворення даних різних типів у кодве-
ктори, методи розв'язування задач та їхні застосування.  

Висновок. Адекватне подання даних є одним з ключових питань штучного інтеле-
кту. Основним напрямом дослідження, розглянутим у цій статті, є проблема подання 
різнорідних даних у системах штучного інтелекту в уніфікованому форматі на основі 
моделювання нейронної організації мозку та механізмів мислення. Розроблюваний 
підхід базується на гіпотезі розподіленого подання інформації в мозку та дає змогу 
подавати різні типи даних, від числових значень до графів, у вигляді векторів великої, 
але фіксованої розмірності.  

Найважливішими перевагами розробленого підходу є можливість інтеграції та 
ефективного оброблення різних типів даних і знань, високий ступінь паралельності 
обчислень, надійність та стійкість до шумів, можливість апаратної реалізації з високою 
продуктивністю та енергоефективністю, оброблення даних на основі асоціативного 
пошуку за схожістю — подібно до того, як працює людська пам’ять. Це дає змогу уні-
фікувати методи, алгоритми та програмно-апаратні засоби для систем штучного інтеле-
кту, підвищити їхню масштабованість за швидкістю та пам’яттю зі збільшенням обсягу 
та складності даних.  

Дослідження створює основу для подолання недоліків сучасних підходів до ство-
рення спеціалізованого штучного інтелекту на основі глибоких нейронних мереж і 
відкриває шлях до створення загального штучного інтелекту. 

Ключові слова: розподілене подання даних, асоціативно-проективні нейронні мережі, кодве-
ктори, гіпервекторні обчислення, векторно-символьні архітектури, штучний інтелект. 
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