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RANDOM PROJECTION AND TRUNCATED SUD FOR ESTIMATING
DIRECTION OF ARRIVAL IN ANTENNA ARRAY

Introduction. The need to solve inverse problems arises in many areas of science and tech-
nology in connection with the recovery of the object signal based on the results of indirect
remote measurements. In the case where the transformation matrix has a high conditional
number, the sequence of its singular numbers falls to zero, and the output of the measuring
system contains noise, the problem of estimating the input vector is called discrete ill-posed
problem (DIP). It is known that the DIP solution using pseudoinverse of the input-output
transformation matrix is unstable. To overcome the instability and to improve the accuracy of
the solution, regularization methods are used.

Our approaches to ensuring the stability of the DIP solution (truncated singular decomposi-
tion (TSVD) and random projection (RP)) use the integer regularization parameter, which is the
number of terms of the linear model. Regularization with an integer parameter makes it possible to
provide a model close to the best in terms of the accuracy of the input vector recovery, and also to
reduce the computational complexity by reducing the dimensionality of the problem.

The purpose of the article is to develop an approach to estimating the direction of arri-
val of signals in the antenna array using the DIP solution, to compare the results with the
well-known MUSIC method, to reveal the advantages and disadvantages of the methods.

Results. Comparison of TSVD and MUSIC (implemented in real numbers) when work-
ing with correlated sources and five snapshots showed the advantage of TSVD in terms of the
power of the useful signal P, by 2.2 times with the number of antenna elements K = 15 and
by 4.7 times with K = 90. The advantage of TSVD in P, is by 3.7 times for K = 15 and by
4.2 times for K = 90. Comparison of RP and MUSIC (implemented in real numbers), when
working with correlated sources and five snapshots, showed the advantage of RP in P ,,;, by 3
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times at K = 15 and by 4.4 times at K = 90. When working with 100 snapshots, the advantage
Oof RP in P,;, is by 3.8 times for K = 15 and by 4.2 times for K = 90.

Conclusions. The approach to determining the direction of arrival based on the [ ,-
regularization methods provides a stable solution in the case of a small number of snapshots,
high noise and correlated source signals. Methods of determining the direction of arrival
based on ly-regularization, in contrast to | -regularization, do not impose restrictions on the
properties of the input-output transformation matrix, do not require a priori information on
the number of signal sources, allow constructing efficient hardware implementations.

Keywords: Direction of arrival estimation, truncated singular value decomposition, random
projection, MUSIC.

INTRODUCTION

The need to solve inverse problems arises in many areas of science and technology
in connection with the recovery of the object signal based on the results of indirect
remote measurements. The transformation of the object signal when interacting with
the propagation medium and the measuring system is modeled by a linear input-
output transformation matrix. The transformation matrix and the vector of the results
of indirect measurements (the output vector) are known, it is required to determine
the vector of the input signal (the input vector, i.e., the solution vector).

In the case where the transformation matrix has a high conditional number, the
sequence of its singular numbers falls to zero, and the output of the measuring sys-
tem contains noise, the problem of estimating the input vector is called discrete ill-
posed problem (DIP) [1, 2]. Discrete ill-posed problems arise, for example, in such
areas as spectrometry, gravimetry, magnetometry, electrical prospecting and others
[3]. Similar properties are possessed by the matrix formed by the steering vectors of
the antenna array.

It is known that the DIP solution using pseudoinverse of the input-output trans-
formation matrix is unstable. Small changes in the measurement (output) vector lead
to large changes in the solution vector, while the value of the solution error is large.
To overcome the instability and, accordingly, to improve the accuracy of the solu-
tion, regularization methods are used. In one of the regularization approaches [1, 2]
the functional of the least-squares method is complemented by the restriction of the
norm of the parameter vector, weighted by the regularization parameter [2]. The
disadvantages of this regularization method are the high computational complexity
and complexity of the selection of an adequate value of the regularization parameter,
on which the stability and accuracy of the solution largely depends. To overcome the
instability and increase the accuracy of the DIP solution, one could use an approach
based on Truncated Singular Value Decomposition (TSVD) [4-7] and an approach
using random projection [8—16].

In this article, the problem of estimating the direction of arrival (DOA) of sig-
nals in an antenna system is considered as a DIP. A linear model for obtaining the
output vector from the input vector (from the signal sources) is given, the impor-
tance of determining DOA from a small number of output vectors (snapshots or
samples) is considered, and a brief review of the methods for the DOA estimation
is given. The methods of solving the DIP based on the Truncated Singular Value
Decomposition and on the Random Projection and their application for the DOA
estimation are considered. Results of the simulation of DOA estimation by these
methods and comparison with results obtained by the known MUSIC method [17]
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are given. Based on the analysis of the experimental study, the domain of applica-
bility of methods for determining the direction of arrival based on the Truncated
Singular Value Decomposition and on the Random Projection are given as well as
directions of further research.

DIRECTION OF ARRIVAL ESTIMATION IN THE ANTENNA ARRAY

The model of output formation for antenna array. We will model the output
of the antenna system under the assumption that the signal sources are distant
and narrow-band [18]. Assuming a distant source, the wave on the array of re-
ceivers is a plane wave moving from the source to the origin. The vector of the
output of the antenna array of K elements in the case of M plane waves incident
on it is written as follows:

y(®) = A©) x(1) + &),

where A(0) is the matrix K x M, formed by the antenna array steering vectors
{a(0)},i=1,..., M, x(?) is the source signal vector (of dimension M), &(¢) is a K-
component white noise vector, ¢ is the time moment. The vector y obtained at a
specific time will also be called a sample (also known as snapshot). The total
number of samples will be denoted by M.

Elements of the vector a(0;) are determined by the phase of the i-th signal (the
signal received from the i-th direction) onto the corresponding antenna element:

FPdsin0) - dysin0) - dysing0,)

2
a0,)=[e * e * oy 1],

where A is the carrier wavelength, d;, = (k—1)d, d is the distance between the
antenna elements (Fig. 1).

The task is to estimate the direction of arrival of the signals, using the in-
formation contained in y(#) and the known matrix A(0).

L] L [ |

-l
-

1 2 K-1 K

Fig. 1. The scheme of receiving a plane wave from
a remote source by a linear uniform antenna array
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Methods for estimating the direction of arrival of a signal using an ar-
ray of antennas. Classical methods of processing data from antenna array can
be divided into parametric and nonparametric methods. The first group includes,
for example, methods based on the maximum likelihood principle. And the sec-
ond group includes methods based on spectral approaches.

The methods based on the maximum likelihood, in turn, can be divided into de-
terministic and stochastic ones, where the signals are considered, respectively, as
deterministic or stochastic processes. In the process of solving the optimization
problem, the parameters corresponding to the arrival directions of the signal are
chosen so as to maximize the likelihood function. Parametric approaches provide an
accurate estimate of the DOA, but have a high computational complexity.

Nonparametric methods for DOA estimating can be divided into two main sub-
groups: methods of beam forming and methods based on subspaces. Nonparametric
methods have less computational complexity with respect to parametric ones.

The popularity of approaches to the DOA estimation on the basis of subspaces
is explained by the fact that they provide high resolution. The representative of the
methods of this group is MUSIC [17-19]. MUSIC uses the Figen Value Decompo-
sition (EVD) of the covariance matrix of samples (or snapshots, i.e., signals received
by the antenna system), on the basis of which the signal and noise subspaces are
formed. The signal subspace is formed by selecting M eigenvectors (spanned by M
eigenvectors), where M is the number of signal sources. The noise subspace is
spanned by K— M eigenvectors. Further analysis and obtaining power spectrum is
based on the orthogonality of the signal and noise subspaces.

MUSIC has a higher performance than conventional beamforming [20]. In the
case where the number of data samples obtained from each element of the antenna
array is sufficiently large, the method provides statistically consistent estimates.

One of the drawbacks of MUSIC appears in the situation when some of the
source signals are strongly correlated, the efficiency of the algorithm in this case
deteriorates sharply. In this case, the number of large eigenvalues becomes less
than the number of signals. Another disadvantage is the reduced efficiency of
MUSIC with a small number of samples.

In the framework of parametric methods for DOA estimating, methods
based on sparse representation and /;-regularization, have been developed. The
use of the concept of sparsity for DOA estimation was first proposed in [21, 22],
where the source localization problem was posed as a linear inverse problem and
the /;-SVD method was developed. The formulation of the task of estimating
DOA using sparseness is natural in the sense that the number of directions from
which signals are sent to the antenna array is much smaller than the total number
of directions analyzed when processing data from the antenna array. Steering
vectors for all possible spatial positions where a source can exist, form a so-
called "overcomplete dictionary".

The /;-regularization methods estimate the DOA based on the data from the
array output and the overcomplete dictionary [23, 24].

Approaches based on sparsity can provide high resolution when working
with a limited amount of noisy data and with correlated signal sources. The
drawbacks of this approach include strict requirements to the properties of the
overcomplete dictionary, i.e. to the value of its mutual coherence. To obtain
reliable estimates based on this approach, one needs to increase the number of
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antenna elements. The drawbacks also include the complexity of hardware im-
plementation of approaches based on sparsity.

Therefore, the study of methods for solving the problem of the DOA estima-
tion based on /,-regularization methods deserves attention. This approach pro-
vides a stable solution in the case of a small number of samples (snapshots), high
noise and correlated source signals. At the same time, it does not impose restric-
tions on the properties of matrix A, and also allows building effective hardware
implementations. The advantages of approaches using regularization include
work in the absence of a priori information on the number of signal sources
(which is required, for example, in MUSIC).

REGULARIZATION METHODS FOR SOLVING DIP
Consider a signal transformation described by a linear model of the form

y=Ax+g, (1)

where the matrix AeRX  and the measurement vector yeRX

(y=yo+€,y¢ =Ax) are known. The components of the noise vector € RE are
realizations of independent, normally distributed random variables with zero mean and

o’ variance. It is required to estimate the signal vector X € R* . With respect to the
antenna array, L is the number of directions, K is the number of antenna elements.

In the case when y contains noise and sequence of singular values of the A
matrix tends to zero (and A has a large condition number), the estimation prob-
lem is called a discrete ill-posed problem. For DIP, the solution (signal vector

estimation) obtained by pseudo-inversion as x* = A*y, where A" is the pseudo-

inverse matrix, is unstable and inaccurate. To overcome the instability and im-
prove the accuracy of the solution, the regularization approach is used.

The classical regularization method is the regularization of Tikhonov. The
Tikhonov regularization problem of the standard form is formulated as follows:

X = arg min([Ax—y], + 2], ). )
X

where A is the regularization parameter. To select the regularization parameter, spe-
cial methods are used, such as the L-curve method, the generalized discrepancy
method, the cross-validation method [1]. Methods for solving DIP based on Tik-
honov regularization are inherent in such shortcomings as the difficulty in correctly
selecting the regularization parameter and the computational complexity.

Another approach to ensuring the stability of DIP solution uses an integer
regularization parameter, which is the number of terms of the model that ap-
proximates the initial data (the model is linear with respect to parameters). To
obtain a stable solution (the estimate x*), for example, methods such as trun-
cated singular value decomposition [1], truncated QR decomposition [25, 14], a
method based on randomization [7, 10, 16] can be used.

The vector x* that estimates x based on the truncated singular value decom-
position is obtained by the following linear model [1]:

ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Ku6. u Bbru. Texs. 2018. Ne 3 (193) 9



E.G. Revunova, D.A. Rachkovskij

k
1T 1T
Xi syp = ViSk Ugy = 2 vis; w0,y (3)
i=1

where u are left singular vectors, v are right singular vectors, s are singular values.
The estimation vector on the basis of random projection is obtained by a
linear model of the form [7]

k
T
xp rp =(REA) Ry =Y ey, 4)
i=1

where r is the column of the random matrix R;, ¢ is the column of the matrix (R;A)".
There is an optimal number k of terms of the linear models (3) and (4),
which minimizes the average recovery error of x

2

e.(k)=E{x-x;['}. 5)

where E{-} is the expectation operator over the noise realizations in the meas-
urement vector, x;* is the vector of the recovered signal, i.e. the vector of x es-
timate by (3) or (4).

Existence of optimal k£ <N is possibly due to the fact that the error of the
true signal reconstruction can be represented as a sum of two terms, one of
which (deterministic) decreases with increasing of the model component num-
ber, and the other (stochastic) term increases and is proportional to the noise
level in the measurement vector [16, 7, 10]. Thus, at a certain noise level, the
global minimum of error can be achieved at 1 < k<.

Unlike regularization associated with the minimization of the functional (2),
where the regularization parameter is a real number, the approach to solving DIP
by regularization with an integer parameter makes it possible to ensure selection
of the best model in terms of error (accuracy) of x recovery (5), by enumerating
N of k-component models (3), (4). Moreover, the solution of DIP based on ran-
dom projection (4) makes it possible to reduce the computational complexity by
reducing the dimensionality of the problem when £ <N [16].

Solution of DIP based on singular value decomposition. The solution of DIP
based on singular value decomposition is obtained [25, 1] as follows:

x*=Ay, A, =VS'U".

Here A, is the A matrix approximation obtained from the £ components of SVD,
U is the matrix of left singular vectors with orthonormal columns, V is the matrix of
right singular vectors with orthonormal columns, S is the matrix of singular values,
and A" is the pseudo-inversion of A. The estimation of the solution x*

k T
uy
X*= E —v,
=1 S;

is formed as the sum of the vectors v; weighted by the coefficients w; = (u;, y)/s;.
As the index i increases, the singular vectors become more and more alternating,
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noise-like. In the case where the estimate x* is determined primarily by the
terms of the sum corresponding to large singular values (that is, to smooth singu-
lar vectors), a smoothness and a small error of the solution are ensured. If x* is
determined by the terms of the sum corresponding to small singular values
(strongly alternating singular vectors) the solution error increases. It is intui-
tively clear that there can be some optimal number of components in expression
(3) that is sufficient to deliver all the features of the modeled signal, but does not
include noise-like singular vectors.

In [5-7] an approach was developed to determine the optimal number of
components of the SVD for the solution of DIP, that is, such number that the
accuracy of the solution is maximal. Let us consider the accuracy of the recovery
of the true signal x and the accuracy of the recovery of the output vector y when
solving DIP on the basis of SVD.

In [5-7], an expression was obtained for the RMS error of x recovery

2
e (k)= “(AZA,{ - I)XH +o’trace(A] A}) (6)
and its components
2
ea(k) =[(A;A, —Dx| and ¢,(k) = o’trace(A;"A})
where ¢4 is the deterministic component of the recovery error and ¢ is the sto-
chastic component of the error.
The expression for the output recovery error [5—7] has the form
2
e,(k) = |(A,A; ~Dy,| +0 trace(A;"ATAA}). 7

Components of the output recovery error:

ey () = |(AA; =Dy, [ . e, (k) = trace(A;"ATA,A)).

where ey is the deterministic component of the recovery error and e is the sto-
chastic component of the error.

In practice, it is impossible to calculate the recovery error due to the lack of in-
formation about x, therefore it is impossible to determine the optimal £ directly by
(6). For a choice of k close to optimal, the model selection criteria have been devel-
oped (i.e., functions having an extremum at k& close to or equal to the optimal £).

Experimental studies [16, 7] have shown that there an optimal number of
the components of linear models (3) and (4) exists, that minimizes the error (5).
The optimum exists because the true signal recovery error can be represented as
a sum of two components, one of which (deterministic) decreases with the in-
creasing number of model components (the model dimensionality), and the other
(stochastic) grows and is proportional to the noise level in the measurement vec-
tor [15, 16, 10, 7]:

e(k) = eq(k) + ey(k) = eq(k) + &° ey(k), (8)

where e4(k) is the value of the deterministic error component for the model of
dimensionality £, ey (k) is the value of the stochastic error component for the
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model of dimensionality k, e (k)= ey(k)/c’. Thus, at a certain noise level, the
global minimum of the error can be achieved at 1 <A< N.

The representation of the error in the form (10), the study of the error compo-
nents and the development of the model selection criteria (MSC) are the techniques
used by the inductive modelling approach [26-28] to find the optimal solution. In
practice, it is impossible to calculate the recovery error e,(k) due to the lack of in-
formation about x, therefore it is impossible to determine the optimal £ directly. For
the choice of & close to the optimal, MSC is used, that is, a function that would have
an extremum at k close to or equal to the optimal one.

Solution of DIP using random projection. One of the problems of using
SVD-decomposition for the solution of DIP is its high computational complexity
O(N?) (for a square matrix). The approach [15, 8, 16, 10, 7] based on finding the
minimum error of solving a discrete ill-posed problem using random projection,
ensures the stability of the solution and allows one to reduce the computational
complexity. Random projections and other randomizations are also used for
various versions of DIPs in [29-32].

Random projection is a kind of methods for the formation of neural network
distributed representations. Distribution representations include not only random
projection based methods [33—-35], but also a number of other representation
schemes for vectors, such as those based on receptive fields [36] or composi-
tional methods [37—41] as well as for structured data, e.g. [42—48]. Note that
distributed representations are closely related to associative memory, e.g. [49,
50] as well as to human memory [51].

To find solution on the basis of the random projection approach, we multi-
ply both parts of the original equation (1) by a matrix Q and obtain the (ap-
proximate) equation:

F x=b,,where, F,=Q;A, F, eR“" b, =Q/y, b, e R".

It was proposed in [16] to obtain the matrix Q by the
QR-decomposition of the matrix GA = QR, where Q is the orthonormal matrix,
R is upper triangular matrix. Elements of the matrix G are the realization of a
random variable with a normal distribution, zero mean and unit variance, k£ < N.

Recovery of x based on the pseudoinversion is obtained as

* +
x, =F/b,.

In [16], the expression for the mean-squared error of the x recovery was ob-
tained for the random projection method:

2
e = ”(F,:Fk - I)x” +o’trace(F,'F;")
and its components are:

e, = ”(F,ij -I)x 2, e, = o trace(F,'F}),

where ¢4 is the deterministic component of the recovery error and ¢ is the sto-
chastic component of the error.
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The expression for the mean-square error of y, recovery has the form:
2
e, =|(AF;Q] —Dy,| +oc’trace(F;"A"AF;).

Components of y, recovery errors are:

AT 2 2 ST AT A T+
¢,q =|(AF;Qf Dy, | . ¢, = c’trace(F;"ATAF;),

where ¢4 is the deterministic component of the recovery error of the measure-
ment vector and e; is its stochastic component.

EXPERIMENTAL STUDY OF THE DOA ESTIMATION METHODS BASED ON REGULARIZATION

Let us consider the results of simulation of DOA estimation using the methods
of truncated singular value decomposition (TSVD), random projection (RP),
and MUSIC.

From the above theoretical analysis it follows that the advantages of the
TSVD and the RP methods (as parametric methods) with respect to the non-
parametric MUSIC are most pronounced when working with a small number of
samples (in the limit with single sample) and also in the case of correlating
source signals. The experimental study was aimed at experimentally confirming
the conclusions about the conditions for the best performance of TSVD and RP.

We used important characteristics of the methods for the DOA estimation.
The first characteristic is the dependence of the output power ("spatial power")
on the angle P(0) that shows how the power in signal direction exceeds the non-
signal power. The second one is the ratio of the maximum power value outside
the directions of the source signals to the maximum power value in the direc-
tions of the source signals that we denote as P.q0.

We used linear array antenna with element spacing d=A/2, the carrier
wavelength A was equal to 150.

Simulation modeling was carried out for the case of two signal sources (sin
waves) with angular coordinates of 10 and 20 degrees and with a signal-to-noise
ratio SNR = 0 (Gaussian noise).

We experimentally investigated non-correlated and correlated source sig-
nals, various number of antenna elements, and various number N of snapshots
and measured the dependences P(0) and P;(K). The non-correlated sources
were modelled by using different (low) frequencies ®, = n/4, w, =n/3 for the
baseband complex signal (known as complex envelope). The correlated sources
were modelled by using the same frequency o, = /4, w, = n/4.

Study of MUSIC and TSVD in complex numbers. Let's compare MUSIC
and TSVD in the case of two signal sources of 10 and 20 degrees with the fre-
quencies ; = /4, o, = ©/3, respectively, at signal-to-noise ratio SNR = 0.

We will calculate P, for antenna arrays with different number of ele-
ments: K = {15, 45, 91, 181}.

P..io dependence on the number of antenna elements was investigated for
the number of samples N = 100 and N = 1. The results are shown in Fig. 2. With

ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Ku6. u Bbru. Texs. 2018. Ne 3 (193) 13



E.G. Revunova, D.A. Rachkovskij

the number of samples N = 100, the MUSIC method provides a stably high Py,
value at —26, —26.5 dB for K = {45, 91, 181} and —23 dB for K = 15. Py, for the
TSVD method with N = 100 improves with an increase in the number of antenna
elements from —4 dB at K =15 to —27 dB at K = 18]1.

Conversely, in the case of single sample (N = 1), the MUSIC method shows
a small value of P4, at —2.5, —2.9 dB. The TSVD method is superior to the
MUSIC for all values of K. The suppression for the TSVD method with N=1
improves with increasing K, from —10 dB at K = 15 to —20.5 dB at K = 181.

Examples of the P(0) dependence for the MUSIC and TSVD methods for
K= {180, 15} are shown in Fig. 3, 4. The range of angles from —90 to 90 degrees.

For the TSVD method (at K= 180, N= 100, o, = /4, w,=7/3), the P(0) de-
pendence (Fig.3) outside the directions to the sources has a constant (of the order of
—32 dB) level in the range of angles from —45 to 45 degrees. In the range of angles
—45...-90 and 45...90 degrees, the P(0) dependence gradually decreases to —50 dB.

O - P ratio or P ratio
— o —o»
©T e MUSIC 5 F  —e-MUSIC
-10 f —®-TSVD 10 —B-TSVD
-15 F
_15 -
_20 -
20 F
25 F
K K
_30 1 '} 1 '} 1 1 1 J _25 1 '} 1 '} 1 '} 1 J
181 91 45 15 181 91 45 15
a) N=100 b) N=1

Fig. 2. Dependence of Py, on the number K of antenna elements (MUSIC and TSVD
in complex numbers)

P(6) dB — MUSIC

-10 ——TSVD
|
230 RS R AR PR SRR RS

Nl “%

S i
N g

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

-50

Fig. 3. Dependence P(0) for MUSIC and TSVD methods at K= 180, N= 100,
SNR =0, o, = /4, ®, = 7/3
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_0 P(6) dB fn@ —— MUSIC

5
f (X ——TSVD

¥ oY
% ForS FIRR A
-25 ”ﬁﬁ 7/ \_ %Qﬁ%q
-30 vﬂ“&j d EE@T 0
-35

-90 -80 -70 -60 -50 -40 -30 -20 -10 0O 10 20 30 40 50 60 70 80 90

Fig. 4. Dependence P(0) for MUSIC and TSVD methods at K= 15, N= 100,
SNR =0, o, = m/4, ®, = 7/3 (in complex numbers)

The peaks in the directions to the signal sources are narrow, the area between the
peaks is flat without spikes, which makes it easy to identify the directions to the signal
sources. The MUSIC method outside the directions to the signal sources provides P(0)
at —35 dB across the entire range of angles (—90 to 90 degrees) and well-defined peaks
in the directions to the signal sources. Thus, with the above parameters, both methods
(TSVD and MUSIC) effectively solve the problem of determining the direction of
arrival of the signal, and the TSVD works somewhat better than MUSIC.

For the MUSIC method (at K= 180, N= 100, ®; = ©/4, o, = 7/3), the P(0)
dependence (Fig.4) has a constant level of —27 dB outside the directions to the
sources. Peaks in the directions to the sources are well pronounced, but they
have a broadening at the base up to 10 degrees. For the TSVD method, P(0) has
a "lobe" character, and it is possible to determine the direction of arrival as the
maxima of P(0) if one selects an adequate threshold value for P(0). In this ex-
periment, the MUSIC method works better than TSVD.

For the TSVD method (at K= 180, N=1, o, = /4, 0, = 1/3), the peaks in the
directions to the sources are well defined (narrow), the P(0) dependence (Fig.5)
outside the directions to the sources has a noise-like character with a constant aver-
age (of the order of —32 dB in the range of angles from —50 to 50 degrees). For the
MUSIC method, outside the directions to the sources P(0) in the entire range of
angles (from —90 to 90 degrees) is at the level of —2.5 dB. There are peaks in the
directions to the signal sources. In this example, TSVD solves the problem of de-
termining the direction of arrival of a signal much better than MUSIC.

For the experiment presented in Fig. 6 (at K= 15, N=1, 0, = /4, w, = /3),
the P(6) dependence obtained by the TSVD method has a "lobe" character, P(6)
for a maximum lateral lobe is of =10 dB. The P(0) dependence obtained by the
MUSIC method also has a number of false peaks, the maximum level of which is
—3 dB. In this experiment, the TSVD method works better than MUSIC.
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Fig. 5. Dependence P(0) for MUSIC and TSVD methods at K= 180, N=1, SNR =0,
®; = /4, ®, = /3 (in complex numbers)
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Fig. 6. Dependence of P(6) for MUSIC and TSVD methods at K= 15, N=1, SNR =
0, ®; = w/4, ®, = ©/3 (in complex numbers)

In many practical tasks it is necessary to know the angular coordinates of
the signal sources that (are correlated, i.e.) have the same frequency. For the
experiment, we form the signal sources with ®, = @, = n/4.

We obtain the dependence (Fig.7) of Py, on the number K of antenna ele-
ments for the number of samples N=100 and N=1.

In the case ®; = ®,, the MUSIC method demonstrates a poor P, both for N =
100 (at the level of —2.46,—-3.75 dB) and for N=1 (1.5, -2.8 dB).

For the TSVD method, the P, value at N= 100 improves with an increase in
the number K of antenna elements from —10.5 dB at K= 15 to —26.88 dB at K= 181
and at N=1: —-10 dB to —20.6 dB. This is much better than for the MUSIC method.

Examples of the P(0) dependence for MUSIC and TSVD for K = {181, 15}
are shown in Fig. §, 9.
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Fig. 7. Dependence of P.;, on the number K of antenna elements in the case ®, = ®,
(MUSIC and TSVD in complex numbers)
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Fig. 8. Dependence P(0) for MUSIC and TSVD methods at K= 180, N= 100,
SNR =0, o, = m/4, ®, = m/4 (in complex numbers)
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Fig. 9. Dependence P(0) for MUSIC and TSVD methods at K= 15, N= 100,
SNR =0, o, = n/4, ®, = 7/4 (in complex numbers)
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Fig. 10. Dependence P(0) for MUSIC and TSVD methods at K= 180, N= 1,
SNR =0, o1 = /4, ®2 = 7/4 (in complex numbers).

The P(0) dependences (at K = 180, N =100, o, = n/4, o, = n/4 (Fig. 8) and
at K= 15, N= 100, o, = /4, 0, = /4 (Fig. 9)) are similar to those of P(0) in
Fig. 3 and Fig. 4. For TSVD outside the directions to the sources (Fig. 8), P(0)
has a constant level of —28 dB (from —45 to 45 degrees) and outside drops to —50
dB. For MUSIC, P(6) is at —3 dB outside the directions to the sources. That is, at
®; = m,, the MUSIC method works much worse than TSVD, and a sufficiently
large number of samples (N = 100) does not improve the situation. For TSVD
outside the directions to the sources (Fig.9), P(0) has a "lobe" character, the
maximum side lobe level is —11 dB. For MUSIC, P(0) outside the directions to
the sources is at —5 dB, the maximum false peak level is —3 dB; which is much
worse than for TSVD.

0 L N~
P(Q) dB / — MUSIC
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Fig. 11. Dependence P(0) for MUSIC and TSVD methods at K= 15, N=1, SNR=0,
o, = /4, ®, = 1/4 (in complex numbers)
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The P(0) dependences (at K= 181, N= 100, o, = /4, 0, = /4 (Fig. 10)
and at K= 15, N= 100, o, = n/4, ®, = n/4 (Fig. 11)) are similar to those of P(6)
in Fig. 5 and Fig.6. For TSVD outside the directions to the sources (Fig. 10),
P(0) has a noise-like character with a constant level of —33 dB (from —45 to 45
degrees) and outside drops to —48 dB. For MUSIC, P(0) is at —3 dB outside the
directions to the sources. That is, at ®; = w, and N= 1, the MUSIC method
works much worse than TSVD. For TSVD outside the directions to the sources
(Fig. 11), P(0) has a "lobe" character, the maximum side lobe level is —10 dB.
For MUSIC, P(0) outside the directions to the sources is at —4 dB, the maximum
false peak level is —2 dB, which is much worse than for TSVD.

Study of TSVD and RP in real numbers. Let us compare the methods
based on the random projection (RP) vs TSVD and MUSIC in the case of two
signal sources of 10 and 20 degrees with the frequencies ®;, ®, (Fig. 12) and
with the signal-to-noise ratio SNR = 0. The range of angles is from 0 to 90 de-
grees. The simulation for RP was carried out in real numbers.

In the case of @, = w, (Fig. 13), MUSIC demonstrates a poor P, for both
N=100 (at the level of —2.35, —4.3 dB), and for N= 5 (-2.7, -3.26 dB). The
P..io value for TSVD (in complex numbers) at N= 100 improves with an in-
crease in the number K of antenna elements from —10.2 dB at K =15 to —19.7 dB
at K=91 and at N=5 from —-10.9 dB to —16.9 dB.

TSVD in real numbers at N = 100, an increase in the number of antenna el-
ements leads to an improvement in the P, from —8.8 dB at K= 15 to —18.1 dB
at K= 91 and at N=5 from —6.1 dB to —15.6 dB. The P, value for RP in real
numbers at N= 100 improves with the increase in the number of antenna ele-
ments from —9.1 dB at K= 15 to —17.9 dB at K =91 and at N=15 from —8.0 dB
to —14.2 dB. TSVD (both in complex numbers and in real numbers) and RP pro-
vide a much better P, value than MUSIC. Examples of P(6) dependencies for
the MUSIC, TSVD, and RP methods for K = {91, 30} are shown in Fig.14, 15.

We also investigated the dependence P(0) at K= 91, N= 5, o, = /4,
o, =7/4 (Fig.14) and at K= 30, N= 5, o, =m/4, o, =n/4 (Fig.15) for the
MUSIC and TSVDc methods working in complex numbers, as well as for
TSVDr and RP methods working in real numbers.

0 [ Puic —e MUSIC —8- TSVDGC O Paio e MUSIC -8 TSVDc
5k —A-TSVDr —%-RP —A-TSVDr —%-RP
_5 -
_10 L
15 b 10 b
20
_15 L
_25 L
———« K K
_30 i 1 i 1 i 1 i J _20 1 1 1 1 i 1 . J
1 45 30 15 91 45 30 15
a) N=100 b)N=5

Fig. 12. P, dependence on the number K of antenna elements for RP, TSVD and
MUSIC (MUSIC and TSVDc in complex numbers, TSVDr and RP in real numbers)
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Fig. 13. P, dependence on the number K of antenna elements in the case of ®; = ®,
(MUSIC and TSVDc in complex numbers, TSVDr and RP in real numbers)
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Fig. 14. Dependence P(0) for MUSIC, TSVD and RP at N=5, K=91
(MUSIC and TSVDc in complex numbers, TSVDr and RP in real numbers)
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Fig. 15. Dependence P(0) for MUSIC, TSVD and RP at N=5, K=30
(MUSIC and TSVDc in complex numbers, TSVDr and RP in real numbers)
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The MUSIC method works poorly for both K= 91 P(6) outside the direc-
tions to the sources is —4 dB, and for K= 30 P(0) outside the directions to the
sources is —3.5 dB.

The TSVD methods (in complex and real numbers) and RP work in a simi-
lar way to each other. The dependence of P(0) outside the directions to the
sources has a stochastic (nonsmooth) character and a decreasing trend from —20
dB to 40 dB at K= 91, and from —15 dB to —35 dB at K = 30.

For TSVDc, P(0) outside the directions to the sources at K =91 decreases
somewhat faster than for TSVDr and RP; the P(6) dependences for TSVDr and
RP practically coincide. The entire group of the TSVDc, the TSVDr and the RP
methods works better than MUSIC.

CONCLUSIONS

The approach to DOA estimation based on the /,-regularization methods pro-
vides a stable solution in the case of a small number of samples (snapshots), high
noise level and correlated source signals.

Comparison of TSVD and MUSIC implemented in complex numbers, under
conditions of correlated sources and single sample showed the advantage of
TSVD in terms of Py, by 6.7 times with K =15 and by 7.5 times with K= 181.
At 100 samples, the advantage of TSVD in terms of P, is: by 4.3 times for
K =15 and by 7.2 times for K = 181.

Comparison of TSVD and MUSIC implemented in real numbers, under
conditions of correlated sources, and five samples showed TSVD advantage in
terms of P, by 2.2 times for K= 15 and by 4.7 times for K = 90. At 100 sam-
ples, the advantage of TSVD in terms of P, is: by 3.7 times for = 15 and by
4.2 times for K = 90.

Comparison of RP and MUSIC implemented in real numbers, under conditions
of correlated sources, and five samples showed RP advantage in terms of P, by 3
times for K= 15 and by 4.4 times for K= 90. At 100 samples, the advantage of RP
in terms of Py, is: by 3.8 times for K = 15 and by 4.2 times for K = 90.

Methods the DOA estimation based on /-regularization, in contrast to those
based on /;-regularization, do not impose restrictions on the properties of the input-
output transformation matrix, and also allow efficient hardware implementations.
The merits of /-regularization include the fact that unlike such methods as MUSIC,
it does not require a priori information on the number of signal sources.

Let us consider the following promising directions for further research.

The characteristics of the random projection method for the real-valued case
were investigated. It is of interest to study the characteristics of the random pro-
jection method for the complex-valued case.

Radar images (2D or 3D) which are formed by processing radio signals emit-
ted by the radar and reflected by the object, have a widespread use in various ap-
plication areas. For example, in geoinformatics [52, 53] and other areas they use
such images obtained by remote sensing of the Earth from space [54-57].

Advantages over optical images include the possibility of obtaining at any time
of day, in the presence of cloudiness, under different weather conditions, and with
characteristics of objects different from optical images [58, 54-57]. So, they are
used for automated mapping of various crops and assessment of the structure of their
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areas and conditions, forecasting the harvest, etc. [54-57]. In addition, it is possible
to display objects under snow, vegetation, and even underground [58].

When receiving radar images, beamforming is used, i.e. antennas with a
formed radiation pattern (scanning is performed perpendicular to the direction of
motion of the satellite), for which the method proposed in this article can also be
applied. Therefore, it is important to study its adaptation and characteristics in
the task of obtaining radar images.

A synthetic aperture radar (SAR) produce images by processing the records
of the reflected signal of certain part of the Earth's surface from a variety of an-
tenna positions obtained by the motion of its carrier. In this case, taking into
account the Doppler shift of the frequencies of the received signals makes it
possible to "focus" at a certain point. This gives a large effective virtual ("syn-
thesized") antenna aperture for a particular point and significantly increases the
image resolution compared to the physical antenna used [58] (along the direction
of motion, the resolution reaches half the length of the physical antenna, regard-
less of the distance to the object).

The reverse SAR is obtained by observing a moving object from a fixed antenna.

Therefore, it is of interest to study the application of methods based on a sta-
ble solution to discrete inverse problem to SAR, by analogy with [59].
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3ACTOCYBAHHS BUITAJIKOBOI ITPOEKIIIT TA YCIYEHOI'O CUHT YJIAPHOTO
PO3KJIAHAHHA U1 BUSHAYEHHA HAITPAMKY ITPUXOAY CUTHAJIIB
3A IOIIOMOI'M AHTEHHOI'O MACHUBY

Beryn. HeoOxinHiCTh po3B'si3aHHS 00E€pHEHUX 3a7ad BUHHKA€ B 0araTbox ramy3sx HayKH i
TEXHIKH Y 3B'3KY 3 BiJHOBJICHHSM CHUTHAITy 00'€KTa 3a pe3yJbTaTaMH HETPSIMUX JAUCTAHIIiN-
HUX BUMIPIOBaHb. Y Da3si, KOJM MaTPUIls IEPETBOPEHHA MA€ BUCOKE YHCIO 00YMOBIIEHOCTI,
psn 1l CHHTYISIPHEX YHCENT CIaJae 0 HYJNS 1 BUXiJ BUMIPIOBAJIBHOI CHCTEMH MICTHTB IIyM,
3a7ady OI[IHIOBAHHS BEKTOpa BXOJYy Ha3UBAIOTh JUCKPETHOIO HEKOPEKTHOIO OOEpHEHOIO
3amauero (JJH3). Bigomo, mio pimennas JJH3 3 BUKOpUCTaHHSAM TCEBIOOOCPHEHHS MATPHIL
NePETBOPEHHSI BXi-BUXiJ] € HECTIMKUM. J{J1sI MOI0JIaHHS HECTIHKOCTI 1 MiZIBUIIICHHS TOYHOCTI
PpIIICHHS] BUKOPHCTOBYIOTh METOJH PETyJsIpU3aLii.

Po3pobaeni nmigxonu no 3abesneuyeHHs criiikocti pimenHs JIH3 (yciuene cuHrynspHe
poskinaganus TSVD 1 BumaakoBy mnpoekTyBaHHS RP) BHKOPHUCTOBYIOTH HiJIOYHCENbHUIT
napameTp peryispusallii, B SIKOCTI SIKOT0 BUCTYIA€ KUTBKICTh WICHIB JIiHIIHOT Mozeni. Pery-
JIAPU3AILs 3 IITIOYHCETBbHUM [TapaMeTPOM JIa€ MOXIIUBICTD 3a0e3MeYnTH BUOip Mojei, OJiu-
3bKOI 10 HaliKpamioi 3a TOUHICTIO BiTHOBJIEHHS BXiJHOTO BEKTOpa, a TAKOXX JIO3BOJISIE 3HU3U-
TH OOYHUCITIOBAIBHY CKJIaHICTh 32 paXyHOK 3HIDKEHHS pO3MIPHOCTI 3a/1a4i.

Meta. Po3poOuTH miaxix 10 BU3HAYCHHS HANPSIMKY IPUXOAY CHTHATIB B aHTEHHY CHC-
TeMy 3a Jonomoru pimeHHs JITH3, mpoBecTr HOpPIBHSHHS PEe3YyNbTaTiB 3 BiJOMHM METOIOM
MUSIC, BUSBUTH NepeBaru Ta HEJIOMIKH METO/IIB.

PezyabTaTn. IopiBasuas TSVD i MUSIC, peanizoBaHuX B JIHCHHUX 4HClaX, Mif 9ac
pobOTH 3 KOpENbOBAaHUMH JDKEpeNlaMH II0 I'SIThOX 3pa3kax IMokazano rmepeBary TSVD 3a
NOKAa3HUKOM TOTYKHOCTI KOPHUCHOTO CHUTHaNY P, B 2.2 pa3 y pa3i KUIbKOCTI aHTEHHHX
eneMeHTiB K = 15 1 B 4.7 pa3 y pasi K = 90, mig gyac pobotu o 100 3pa3kax nepesary TSVD
32 IOKa3HUKOM P, CTAaHOBUTH 3.7 pa3 y pa3i K =15 14.2 pa3z y pasi K = 90. [Topiusuus RP
1 MUSIC, peaiizoBaHuX B JIHCHHX YUCIIaX, i 9ac poOOTH 3 KOPEIHOBAHUMH JDKEPEIAMH 110
n'IThOX 3pa3kax Iokaszayo nepeary RP 3a moka3sHukoMm P, B 3 pasu y pasi K=1518 4.4
pasu y pasi K =90, mig yac podotu o 100 3pa3kax nepeary RP 3a moka3sHukoM P, cTaHo-
BUTH 3.8 pa3 y pa3i K=1514.2 paz y pazi K =90.
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BucnoBku. Ilinxix 10 BU3HAYEHHS HANPSIMKY MPUXOJY CHUTHAIIB HAa OCHOBI METOMIB
l,-perynsapuzaniii 3a0e3neuye CTiliKe pillleHHs B pa3i Majioi KiJbKOCTI 3pa3KiB, BUCOKOTO 3allly-
MIICHHSI T2 KOPEJTbOBAaHOCTI CHUTHANIB JpKeped. MeToan BU3HAYEHHS HANPSIMKY TPHXOIY CHT-
HaJIIB Ha OCHOBI /,-peryisipu3altii, Ha BiZIMiHY BiJ /;-perynspu3altii, o He Haki1ajgae 0OMeKeHb
Ha BJIACTHBOCTI MATPHIIi TIEPETBOPEHHS BXIiJI-BUXiJl, HE BUMAraroTh anpiopHoi iHdopmariii mpo
KUIBKICTh JIXKEPEN CHUTHAIY, I03BOJISIIOTh OyyBaTH ¢(DEeKTHBHI arapatHi peanizarfii.

Knrouosi crhoea: susnaueniss HANpsamMKy npuxooy CUCHALE, YCIueHe CUHSYISIPHE PO3KIAOAHHS,
sunaokosa npoexyis, MUSIC.
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[IPUMEHEHUE CJIVYAMHOI' O ITPOELIMPOBAHMS U YCEYEHHOI'O
CHUHI'VJIAAPHOI'O PA3JIOXEHUA JUIA OIIPEJEJIEHUS HATIPABJIEHN A
[MPUXOJA CUT'HAJIOB C ITOMOLIBIO AHTEHHOI'O MACCHUBA

B cratpe 3anaua onpenenenus HanpasneHus npuxoaa cursanos (HIIC) B antenHoit cucteme
paccmatpuBaetcs kak [IH3. IlpuBoautcs nuHeliHas MOAENb MOJTYYEHHs BEKTOPA BBIXOJA IO
BEKTOpY BX0Ja (MCTOYHHKOB CHI'HAJIOB), paccMaTpuBaeTcs BaxkHOCTh onpenenenus HIIC no
MaJioMy KOJIN4ECTBY BEKTOPOB BhIX0J1a (00pa31oB WK KaJIpoB), JaH KpaTKHi 0030p METOZI0B
onpenenenust HIIC. PaccmarpuBarorcst meronsl permenus JIH3 Ha ocHOBE yCeueHHOTO CHH-
TYJISIPHOTO PA3/IOkKEHUS U CIy4alHOTO MPOELMPOBAHMUS U UX MPUMEHEHHE JUI ONpeaeIeHNs
HIIC. IlpuBoasitcs pe3ynbTaThl UMHUTAIMOHHOTO Mozenuposanus onpenenenus HIIC stumu
METO/IaMH U CpaBHEHHUE C Pe3yJIbTaTaMy, N0Jy4eHHbIMU U3BecTHBIM MeTogoM MUSIC.

Kniouegvie cnosa: onpedenenue manpagienus npuxooda CUSHANO8, YCEYEHHOe CUHZYNApHOoe
pasaodicenue, cryyaiinoe npoeyuposanue, MUSIC.
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