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OmHMM W3 BaXHBIX AaCMEKTOB IIOCTPOCHHUS BBICOKOTOYHBIX
CHCTEM ympaBieHus kocmMudeckumu ammapartamu (KA) sBisiercs Be16op Takoro
OGOpTOBOrO  M3MEPHUTENFHOTO KOMIUIEKCa, KOTOPBIM OBl TapaHTHPOBAl
HAO0JI0IaEMOCTh CUCTEMBI U HE SIBIISUICS OBl M30BITOUHBIM. B pabote mpoBeneH
aHanM3 ~ HaOMIOJaeMOCTH  Hawbolee  PacmpOCTPAaHEHHBIX  OOPTOBBIX
W3MEPUTENBHBIX MPUOOPOB KOCMHYECKHX aIlllapaTroB, a HWMEHHO —
MarHUTOMETpA, TOCTPOUTENS MECTHONH BEPTHKAIU, aCTPOAATUHKA U JATUYUKOB
YIJIOBBIX CKOpocTed. OueHMBaHME NPUIOAHOCTH M KadecTBAa Pa3UYHBIX IO
COCTaBY M3MEPUTEBHBIX KOMIUIEKCOB CHCTeMbI ynpasiaeHus: KA ocHoBaHO Ha
CYIIECTBYIOIINX METOJAaX TEOPHUH HAOII0JAaeMOCTH AWHAMHYECKHX CHCTEM C
YYETOM YypaBHEHHMH HaONIOAEHWS M [JUHAMHUKU yrioBoro masmxeHus KA.
UccnenoBanus mokaszany, 4ro HamOoinee 3(QQPEKTHUBHBIM C TOYKHA 3PEHUS
HaOmomaemoctn  cuctemMbl KA, sBmseTcs WM3MEpUTENBHBIH KOMILIEKC,
COCTOSILLIMI U3 aCTPOJaTUYHKOB.

Kniouegvie cnoea: oneHUBaHUE COCTOSTHMS, HAOIIOIAaeMOCTb,
KBaTEPHUOH, KOCMUYECKUH annapaT, MarHUTOMETP, aCTPOJATIHK, IOCTPOUTEITH
MECTHOM BEPTUKAIIU.

OnmHuUM 3 B@KIUBHX AaCMEKTiB MOOYIOBH BHCOKOTOYHHX
cHCTeM KepyBaHHs kocMidnumumu anapatamu (KA) e Bubip takoro 60opToBoro
BUMIpPIOBAJILHOTO KOMILUIEKCY, SIKMH OM rapaHTyBaB CIIOCTEPEIKYBAHICTh CUCTEM
Ta He OyB OM HaAIMIIKOBUM. B po0OTi MpOBEICHO aHAN3 CIIOCTEPEKYyBAHOCTI
HAWOIMBII MOMIMPEHHX OOPTOBUX BHUMIPIOBATBHUX MPUCTPOIB KOCMIYHHX
amapariB, a camMe — MarHiTomerpa, mHoOymoByBaua MiCIeBOl BepTHKAIi,
acTpomaTyMka Ta OATYMKIB KyTOBHX MmBHAKOCTel. OmiHKa MPUAATHOCTI Ta
SIKOCTI PI3HHUX 3a CKJIaJOM BUMIpIOBalbHUX KoMIUlekCiB KA rpyHTyeThCs Ha
HasIBHUX METOAaX Teopil CIIOCTEePeXKyBAHOCTI IMHAMIYHHUX CHCTEM 3
ypaxyBaHHAM DIBHSHb CIOCTEPEKEHHS Ta IMHAMIKM KyroBoro pyxy KA.
JocmimkeHnss moka3zanu, MmO HaHOUIbl e()eKTHBHMM 3 TOYKH 30DpYy
CIIOCTEPEIKYBAHOCTI € BHMIDIOBAIBHUA KOMIUIEKC, SIKHI CKIIaJa€Thcs 3
aCTPONATUYHKIB.

Knrouosi cnosa: OLIHIOBaHHS CTaHy, CIIOCTEPEXYBaHICTb,
KBaTEPHIOH, KOCMIYHHI amapaT, MAarHiTOMETp, acTPOJAaT4YHK, MOOYA0BYBad
MICILIEBOI BepTHKAI

INTRODUCTION

It is very important to choose a set of measurement equipment, which on the
one hand is not excessive, and on the other — allows to estimate all attitude
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parameters with required accuracy while designing precision spacecraft (SC)
attitude control system (CS). The latter is achieved not only by proper selection of
measurement system, but also by mathematical processing of measurement data,
that ensures effective filtering of errors in the estimation of SC state parameters.

This article is focused on the problem of the minimization of onboard
equipment, which is especially important task for small spacecrafts. Suitability and
quality of different measurement systems is assessed using existing methods of
dynamic systems observability theory based on observation equations and
spacecraft’s angular motion. Such approach to the determination of spacecraft’s
attitude (in case of incomplete measurements) is particularly considered in [1],
where the vector of parameters that characterizes the attitude and angular velocity
is determined using local geomagnetic field characteristics. These characteristics
are obtained by calculation on measurements received from magnetometer with
three orthogonal oriented probes without involvement of other measurements.
Moreover, in [2] authors have shown the possibility to determine SC attitude using
only two (arbitrary) out of three magnetometer probes. Evaluation of observability
in both cases was carried out by dynamic filtering [3]. Sufficiently to show
observability of the full attitude parameters vector in case when SC attitude
quaternion, obtained from star sensor measurements, which is known in each point
of SC trajectory. Determination of the attitude and angular velocity only on results
of onboard measurements obtained from star sensor without involvement of other
devices is regarded in [4]. Kalman filter, which allows to effectively evaluate both
the quaternion attitude and angular velocity, was used in this research.
Furthermore, article [4] provides other of publications devoted to the solution of
the same problem by analogous as well as other possible methods.

PROBLEM STATEMENT

For observability evaluation of different measurement systems combinations
we have used an approach which is slightly different from those mentioned above.
The approach is based on the condition of solvability of nonlinear system of
equations, which are obtained from observation equations with the use of
Lyapunov differential operator [5].

We have considered not the full list of existing measuring sensors, but only
those ones which are the most commonly used in practice [6]. In particular, the
observability of various combinations of the following devices have been explored:

— Magnetometer with three orthogonally arranged magnetically sensitive
probes;

— Star sensors or different astro-measurement systems [7, 8, 9];

— Sets of angular velocity sensors;

— Builder of the local vertical.

Since the most interest is focused on the combination of sensors, which
provide incomplete direct or indirect information about the attitude parameters, we
used the information on system dynamics, which is defined by the equations of SC
angular motion. In addition, equations that describe the process of observation for
the described above measuring systems are included.

This will be presented in the first two sections below. In the third section will
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be described observability assessment procedures which are used in the study along
with their adaptation to the mathematical models. Results for the observability of
various combinations of measurement systems, the simplest possible estimator
based on astro-sensor and conclusions resulting from the carried out analysis are
presented in the final section.

MATHEMATICAL MODEL DESCRIPTION

Model of Spacecrafis’ Angular Motion. Mathematical model of the SC angular
motion may be written by using different coordinate systems and positional
parameters of attitude (Krylov angles or normalized quaternion components).
Establishment of observability or non-observability conditions does not depend on
the choice of models, attitude parameters or coordinate system.

However, due to significant nonlinearity of these models, there may be some
difficulties in analysis of the observability using approximation of the models.
Thus, if in the kinematic equations Krylov angles are used, then under certain
parameters a mathematical singularity occurs, but when someone moves to another
description, for example, using a normalized quaternion, this feature is eliminated.

Nevertheless, preliminary studies have shown similar results for the
parameters domain without singularity. Therefore, model with positional
parameters as components of the quaternion is used in this paper. As coordinate
systems we use the following orthogonal coordinate systems: SC related coordinate

u_u_u

system (RCS) Oxyz and certain inertial coordinate system (ICS ) Ox"y"z

Then, according to [10], under SC attitude we assume the orientation of RCS with
respect to the orientation of ICS. We use the results of [11, 12, 13] and write the
equation of angular motion of the spacecraft in case when angular coordinates are
the components of the quaternion

A= %B(A)w,

(1)

. -1 -1 =
o=J "m,~-J -oJot+m,,

where A is a quaternion with components Al = (7‘0: AT ), Al = (kl s Ao, A 3) which

satisfies the normalization condition:
JAE)? =23 0)+ 27 (0)-2e)=1. 2)

vector o= (col, 0y, 03 )T is composed of the projections ®;, i =1, 2,3 of absolute
SC angular velocity on RCS axis, J — symmetric positive definite matrix

J=JT>0 , which is a representation of SC inertia tensor in RCS with the respect

to the center O of RCS ; m, is a vector of control moments, and m, is a vector

of disturbing moments, which are defined by projections on the axis of the RCS;
matrix B(A) of 4x3 dimension and @ with 3x3 dimension have the following

form:
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0 —®3 O

A
®= ®3 0 — ,B(A)= — >
—0, o 0 7\.013 +A
where [; is an identity matrix3x3, A — matrix which has the same

representation as @ but with A;, A,, A3 components.

More detailed description of model (1) characteristics along with the
normalization condition (2) are described in [11, 12, 13].

Observation Equations. To write the observations equations for definite
measurement systems, we need the vectors transfer matrix for transition from ICS

to RCS, expressed in terms of the quaternion A . If v* andv are column-vectors

with components that are their projections on axis Ox"y“z¥ and Oxyz

respectfully, then according to [13, 14] we have
v =S(A)v, 3)
where S(A) is an orthogonal (S -1 (A)=s r (A), dets(A)= 1) 3x3 direction
cosines matrix of the axes Oxyz in Ox"y"z" which has the form
S(A)=1I5 =20 gk + 220, 4)

with matrix A having the described above representation.
MEASUREMENT SYSTEMS DESCRIPTION

Magnetometer. Magnetometer is certained to measure projections of the Earth
magnetic field induction vector on three orthogonally arranged magnetic probes
during the SC motion on the orbit. Typically, the magnetometer is made in a form
of monoblock and is mounted on the SC so that the measurement axes are parallel
to the axes of the base coordinate system (BCS), which may be the same as RCS or
can be associated with it by (3) and (4). In this case the transition quaternion from
the BCS to the RCS is strictly fixed, but under condition of flight may slightly be
different from those that were installed on the Earth. For simplicity and due to the
fact that the observability conditions are not affected by magnetometer disposition,
we consider the case of coincidence of BCS and RCS.

Such magnetometer allows to determine positional parameters of the attitude:
Krylov angles or transition quaternion from ICS to RCS. It is assumed that at each
point of the orbit trajectory components of the magnetic field in the ICS are known.
Moreover, to determine the attitude it is sufficient to know only the direction of

that vector, i.e. its direction cosines or vector by = (cos a(t), cosp(t), cos y(t))T

provided that cos? alr)+ cos? B(t)+ cos? v(t)=1. Then the equation of observation

may be written as
()= S(A@)-bole), (5)
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where y(t) is a vector of direction cosines of the unit vector, which has the same
direction as a vector of the measured magnetic field induction. The quaternion
normalization condition (2) should be added to the (5) in order to determine current

quaternion A(t) from the corresponding nonlinear equation using calculated b (t)

and obtained from the measurements y(r). However, as it is well known, this

problem cannot be solved uniquely.

Astro-measurement system. Astro-measurement system is composed of one or
more star sensors and each sensor in its field of vision registers n stars (n>2).
Usually astro-sensor measures angular coordinates of the axes of internal
coordinate system (IntCS), which is directly tied to the sensor’s line of sight in the
ICS. The number of used astro-sensors does not affect the observability conditions.
Therefore, we consider a single device, for which IntCS coincides with the RCS.
We assume that as a result of observations of several space objects (stars, the Sun)
and use of point algorithms described, for example, in [7, 15], on the output of the
astro-measurement system we get a normalized quaternion A(t), which contains

some component-wise errors.

Angular Velocity Sensors. One of the methods of construction a complete set
of the angular velocity sensors is a monoblock, comprising four identical fiber-
optic gyroscopes, which allows the most effective estimation of all three
components of SC angular velocity. Therefore, the equations of observation of this
set are quite simple. They contain values of angular velocity co(t) components
measured with some error.

However, when estimating the observability, for the sake of research
completeness, we will use individual components of the angular velocity.

Local vertical builder. On a number of satellites local vertical builder (LVB)
is widely used as a position sensor, which effectively measures the projection of
the Oy, axis unit vector on Ox and Oz axis, while the projection on Oy axis is
not measured. Then the observation equations that describes the process of
measurements carried out with LVB, can be written as

W)= GuS(A o +(0), (6)
where y(t) is a measurement vector, v, is a vector with components

vo = (0,1, O)T ,and () is a vector of measurement error, G, — matrix of 2x3

100
G, = .
00 1

dimension written as follows

OBSERVABILITY CONDITIONS

The above equations of spacecraft angular motion and some observation
equations are nonlinear. Obtaining the overall global observability conditions for
such systems is a complex problem today. Therefore, the most appropriate and
constructive approach to calculate the output time derivatives [5] is approximate
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analysis using linearization procedure and local observability conditions. Consider
a system described in state-space form as

)'c=f(x,u,t),

y=h(x,u,t),’ )

with state vector x € R", measurement vector y € R™; f and h are continuous

and differentiable as many times as required functions of their arguments —
namely this is the case considered in the problem. In order to calculate (or
measure) time derivative, we may write the local observability conditions. Let’s
write Lyapunov differential operator, defined on the system trajectory (7)

L[*]=%f+%”+%’ ®

where [*] denotes any differentiable vector-function of its arguments. As such

function we take y written in the form of (7) and differentiate the observation
equation with respect to of n-1 times. We get

y=h y=Lp]=Lh,... V= 1p. 9)

Thenx(t), which should be found according to the observability problem

statement, is the solution of equations system (9). For the system (9) unique
solvability in these conditions is necessary and sufficient that

T T T
rankD = rank oh iLh iLn_lh =n, (10)
Ox Ox Ox
oh 0O . . . .
where 5_ s a—Lh,--- are Yakobi matrices, which are calculated on the solution
X Ox

x= x(t) with known input (control) u(t) As a result, using rank criteria (10) we

can consider only a particular motion observability. Therefore, assessing systems
observability on the base of rank criteria (10) is not a constructive approach. If we
have a linear system

x=Ax+ Bu,
with linear observation equations

y=Hx+Cu,

where A, B,C, H are constant matrices of corresponding dimensions, then criteria
(10) given that

L[* ]=%(Ax+3u)+%d,

takes the well-known form
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| | | | -1
mnk[HT;ATHT;(AT)ZHT;---;(AT)' HT}=n. (11)
If matrices A, B, C, H are functions of time, then (10) will take the form

ranleg i HIT . i H,{_ll=n , 12)

where I1g=H(t), 11, =Tlx1+11;_- 4, k=L,n-1.
Each block in (11, 12) has nxm dimension (where m is dimension of vector
vy ), and overall dimension of matrix in square brackets equals to nxn-m. In

contrast to (10) the criterion (11) is global condition and gives full or partial
(incomplete) observability of the system on all system trajectories.

Assume that functions f( - ) and A( - ) from (9) can be written as :
f(x, u, t)= Ax + Bu +fNL(x, u, t),
(13)
h(x, u, t)= Hx + Cu +hNE (x, u, t),

where A, B,C,H are matrices of corresponding dimensions. Vector-functions

f M- and A have nonlinearity with respect to variables x, u of at least second-
order (it is assumed that f (0, 0, t)=h(0, 0, t)=0). The expansion (13) may be
carried out not only near zero, but in the neighborhood of any stationary state

x*,u®, with the same properties of functions f N and BV Observability matrix

I' provided (13) can be represented as follows

F:[(HA+D1(x, u, 1)) i (HA2 +D2(x,u,t)y- i i (HA’H+D,H(x, u, r)ﬂ, (14)

where matrices D;, i=1,n—1 have at least linearly dependent from x,u and
D; =0 providing that x=u=0. Since expressions for D; =D; (x, u, t) are

cumbersome and are not used in future sections, we will not provide them here.
Assume that the linearized system is fully observed, i.e.

Tt (R (YT
rankly=rank| A"H" \\4" | H" -1 |4 H" |=n. (15)

It means that among n-m columns of matrix I}, there are such n columns,

that square matrix determinant composed from these columns, will not be equal to

. *
zero. Let us construct matrix T =r5‘ +D" from these n columns, where D
consists of the same columns as matrix Fg . According to the properties of matrix

D;, D" =0 while x=u=0 . Since matrix Fg is nonsingular, we may write

* * * Y1 *
I =F0[In+(l"0) -D j
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1
According to the perturbation theory, matrix 7, + (FJ T D" is nonsingular for
(FO) D (FO) D

may be achieved by using small values of x and u. Thus, full observability

any matrix norm with condition <1. The condition <1

condition for all trajectories defined by linearized equations and which ensure
* _1 *
(FO) D

Although the resulting observability condition using linear approximation is
local, but it remains valid for a set of solutions near the equilibrium. If we cover

fulfillment of <1 follows from (15).

the entire set of acceptable x€ X and u € U with close enough stationary points
x*, u® such that in the neighborhood of each of them the system is observable, and

* _1 *
(FO) D

the intersection of sets defined by the condition <1 fully contain X

and U, then we have sufficient observability condition of the original nonlinear

system. If exist such x*,u® , where linear system is not fully observable, then in
order to find precisely the border between observable and non-observable area
more complex analysis may be required. In this case, instead of rank criteria of

observability, we will consider condition number of observability matrices Fg

(condl’ 5‘ ). The concept of practical observability, based on the concept of practical

rank of the matrix is introduced [16]. We consider the system to be practically
observable, if the inverse value of observability matrix condition number is greater
than or equal to a specified value €. The value of ¢ is usually agreed with existing
uncertainties in the measurements and motion equations. Than areas of X and U

where X(rf; )=condf 5‘ <e ! are practically observable. Singular value

decomposition may be used to evaluate practical observability of a rectangular

matrix I,
I, = PLO! (16)
0 o,

where P=[p,....p,]e R™" and O=|[qy,.... ¢y ]€ ™™™ are orthogonal
1, if =y
0, if i#j

L if i=j

., R™" and
0, if i#]j

matrices, i.e. p,—T-pj ={ and ql'T'qj ={

nmxnm : : :
R are matrix spaces of nxn and mmxnm dimensions respectfully,

Z=diag(61,...,6n) is a diagonal matrix of singular values arranged in

descending order, i.e. >0, 2...206, 20. Singular values of matrix I}, are

exactly half-lines of hyper ellipsoid E defined by the ratio E = {Fox : ||x||2 = 1}.

Condition number of matrix Fg according to [16] for Euclidean norm

(Frobenius norm) is given by
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ki)
x2\lo )J=—-
Gn

Condition number for different norms are equivalent in sense that there are

such constants ¢ and ¢, , that
ax2 Sxa SC2X2>

1
where o defines other norms. For example, for aa=1:¢; =—, ¢; =n.
n

Based on condition number we make judgment about sensitivity of the
estimation algorithm to errors in measurement data and to disturbances equations

in motion. As condl 5‘ >1 , then the closer X(Fg ) to 1, the more effective noise

filtering is achieved for any estimation algorithm. Therefore, when evaluating
observability using various combinations of measurement sensors not only the rank
of the observability matrices of the linear approximation will be assessed, but also
their condition numbers. The consistency issue in condition number and available
errors in the data and equations should be taken into account when estimation
algorithms are developed.

OBSERVABILITY ANALYSIS OF DIFFERENT MEASUREMENT SYSTEMS

Equation of spacecraft angular motion and observation equation, that describe
the processes of measurement may be expressed as (14), i.e with separated linear
part. First, it is necessary to select equilibrium state defined by nonlinear system of
equations (1). Set of all possible equilibrium states is defined by the condition

. = of

i.e. any quaternion which satisfies the normalization condition with zero angular

velocity components satisfy the equations of equilibrium. Quaternion AF defines
position of RCS with respect to ICS that is regarded as some initial state for the
perturbed angular motion. Than normalized quaternion A will define position of
RCS with respect to CCS for this perturbed motion. A purely formal relation

A=A 4+ x*, where x" is some four-dimensional vector x" = (xg,X,X2,X3)
(not a quaternion), which for small XN may be considered as some estimation

deviation of quaternion AF from A . Wherein the following equation, arising from
the normalization condition for A, must be fulfilled by:

kgxo +k1f:xl+k§x2 +k§x3 +%(x§+x12+x§+x32)=0. (17)

If formally substitute A=AF +x%, ©=x into (1), then equation of

perturbed angular motion near (AE ,0) may be written as (13).
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A lR(AE ) x® O3
2 +o
J .

]+fNL(x), (18)

m

* 033 U

where O35 and Oy43 are zero matrices of 3x3 and 4x3 dimension respectfully,
Rl ) oo
NL pap AN U . . . .
f (x): 2 is quadratic vector-function. Equations (18) should be
—~J %0
considered together with (17).

Let us choose in four-dimension set {/\E :HAE H = 1} a points collection {/\115 } in

the neighborhood of which the normalization condition is satisfied with acceptable
error. The totality of these neighborhoods gives all set of feasible A. It is not
difficult to be done, since set of all A is bounded. The partition should be done in

such a way, that quadratic vector-functions f NL (x) in the neighborhood of points

Ajl»; are small enough allowing to carry out practical observability estimation using

matrix Iy (16) i.e. the linear approximation.

In addition to the stationary states, equations (1) allow nonstationary motion,
near which it is also possible to linearize the system and to evaluate its
observability.

Assume that the pair (AE (t),coE (t)) corresponds to some nominal motion, in

the neighborhood of which equations of perturbed motion may be written by
analogy with (18). Than similar to (12) observability matrix I" may be constructed
in the neighborhood of nominal motion. Also for nominal and perturbed motion
corresponding representation of observation equations are written. Then, for each
time point from (12) we may estimate complete state vector observability for a
selected set of measurements, i.e. determine what areas of the trajectory are
observable and which are not. Such estimation will be global for the selected
nominal orbital motion. Approach similar to this was used in observability analysis
in [1, 2]. However, observability analysis is offered to be carried out locally on

time intervals where A (t) and ot (t) vary so weakly that can be considered as
stationary within these intervals. If, in addition to this, assume that ot (t) is small

enough and includes linear terms, which corresponds to the product of of and x*
components , into expression fp; due to their small values, we will obtain (18)
with more complex representation of f;. As a result, an observability analysis
may be done for all valid nominal mode subsets, i.e all the feasible orbital

trajectories in general.

Definitely, taking into account terms with of in the linear part, that can
improve observability conditions, but due to its small value, the condition number
will not change significantly (and in the case of it infinity can become finite, but
still big). In other words, unobservable cases in the proposed approach can become

© V.F. Gubarev, O.N. Diadenko, 2016
ISSN 0452-9910. Ku6epHeTuka u BbI4HucI. TexHuKa. 2016. Boim. 183 61



poorly observable when taking into account o, and estimation algorithms will
become very sensitive to errors in measurement data.
Therefore, observability analysis using (18) for the given measurement system

will be sufficient if on all feasible set {/\jf} full observability conditions are

fulfilled. If subsets {/\115 } with no full observability or with big condition number

exist, then trajectories which go through this subset can be unobservable with such
values of parameters and corresponding time intervals. Though more rigorous
evaluation of observability carried out with taking into account the non-stationarity
may have a significant impact on the observability. However, spacecraft control
system usually includes slow motion as well. Therefore, the proposed observability
analysis is more general with respect to the different control system operation
modes.

From the foregoing it follows that the observability estimations obtained using
proposed approach are more suitable from the practical point of view, than those
obtained on the basis of dynamic filtering.

Using the considered approach, the matrix will have the following form:

0) A
e { 44 43} ’
O34 O3

where Os3, O34, Oy4 are zero matrices of 3x3, 3x4, 4x4 dimensions

respectfully, matrix 443 has the following representation
E, 0, —af) ]
o Y
VR VA
% THh
Y VR &
Bhoth Th
-5, A5, A
" T T
It is necessary to include the normalization condition (17) into the observation
equation at any configuration of measuring system. For example, for magnetometer

taking into account normalization condition in decomposition (12) matrix H is
following

Ag3 =

H=[Hy O], (19)
}\.gnz - K§n3 }\.Ez‘nz + K§n3 - 2}\.%}’11 + }\.fnz - K€n3 - 2}\.?}’11 + }\.gnz + }\.?I’l:;
Hoax = —k§n1+7»fn3 kgnl —ZMEnZ +7»€n3 an1+7»§:n3 —Xf):nl —27»§:n2 +X§n3
“ Xgnl—kfnz kgnl —kgnz —ZMEn3 kf):nl +X§n2 —27L§n3 Mgn1+7»§n2 '
25 2 25 25

np =cosa, ny=cosP, n3=cosy,and expression
2(—)(?0)? + )?)?)bo
Ay =| 1
) (xg +xl X)
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A =(x0,xT), xI =(x, %y, x3) and x® = (xg, x5, x6 )] .

It should be noted that in fact we have a=al(t), B=P(¢), y = y(t). However,

where x

on the observation interval, where AF (t) and ot (t) are almost constant, direction
of the magnetic field also varies a little and therefore may be considered under the
problem solution as stationary related to some small part of the spacecraft
trajectory. Taking into account an existing error between calculated magnetic field
of Earth and its real value this is quite acceptable.

Matrix H and vector function #,; are written analogously with other
combinations of measuring devices.

In the observability analysis using the described approach, stationary points
for Ajl»; were determined based on the values of Krylov angles (y, v, 9), which

varied between

T T
el-——,—|, y,0e|-m mx|.
Y { ; 2} v.0el-n,7]

Then according to [11] quaternion values in the corresponding points were
defined by formulas

E E E E E E
735 =cos%cosw—cose——siny—sinw—sin%,
E E £ E E E
2 =sin%cos—cose——cosy—sinw—siHT,
(20)
E E £ E E £
75 =siny—cosw—sine—+cosy—sinw—cose—,
2 2 2 2 2 2
E E £ E E £
2 cos Y cos ¥ sind v 8

—C0S —sin— + sin —sin——cos —,
2 2 2 2 2 2

Normalization conditions in this case are fulfilled automatically.
When the measurement complex include magnetometer, properties of matrix
H in (19) are additionally analyzed depending on the orientation of the Earth's
magnetic field with respect to the ICS. Computational experiments were conducted
in order to determine such angles o, B, y for which matrix condition number is
the best and the worst. It should be noted that matrix A in (19) is either singular
(rank less than 3) or very ill-conditioned. In the latter case the approximate
normalization condition took effect under the linearization. This was confirmed by
verifying matrix H singularity, which was built when the positional orientation
parameters were Krylov angles (y, v, 9). In this case, the rank of the matrix H
for all a, B, y was less than three, and the system was unobservable at steady
approximation. While using magnetometer in combination with other

measurements the worst and the best orientation of the magnetic field with respect
to an inertial coordinate system were determined based on the condition number.

Moreover, for parameter (y, v, 9) without singularity in kinematic equations

based on Krylov angles, comparison of observability results for two models was
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conducted: using Krylov angles and using (17), (18). Results turned out to be
similar, which confirmed the validity of the formalism (17), (18).
For different combinations of measurement equipment matrices [}y were

formed. Using the SVD-transformation, matrix Fg was separated from matrix I,
and condition number XZ(FS ) was calculated. Including astro-sensor into the

system in addition to other measurement equipment led to Fg be mainly formed

from corresponding to astro-sensor columns. Wherein the condition number of

matrix Fg for astro-sensor was equal to 2 and was the best in relation to all other

possible combinations. Therefore, astro-measurement system gave the best
observability result due to conditionality stability of the inverse problem.

From all other measurement sensors, different configurations of measurement
complex were formed and presented in table 1. There are 31 such possible
combinations. “1” denotes that corresponding sensor is included into the
configuration, «-» denotes that the sensor is absent. Observability results for all
shown in table 1 configurations are presented in table 2 for different equilibrium

values All? in points of set ||AE || =1. In table 2 “+” and “-* denote that the system

is observable or not observable respectively, “+/-* denotes that such combination
of measurement equipment is not always observable.

Table 1
Possible Configurations of Measurement Systems

- ~ ) £ - ~ ) £
P P P o 8 P P P o 8
2 2 2 | 2 2 2 2 2| S 2,
5 g g g | = 2z 3 g g S| = 2
Tl 2120228 2212022 ¢
el 8| £ = g | E| E| = =
| S| Z| 2| 2| E|E|m 3 2|2 2]28)¢
B | 2 2 g s z B | 2 2 g s z
] i i i = 15 < i i E — )
= = = = s £ = = = = B £
= = = Q s = = = Q s
&n &n &n < = &n 33 & 2 =
= = = - < = = = - <
< | < | < 2 < | < | < 2
0 | - - - - - 1 |16 | 1 - - - - -
1 | - | - [ - [ -1 -7 [ - - [ - [1 -

2 - - - 1 - 18 1 - - 1 -
3 - - - 1 1 - 19 1 - - 1 1 -
4 - - 1 - - - 20 1 - 1 - - -
5 - - 1 - 1 - 21 1 - 1 - 1 -
6 - 1 1 - - 22 1 1 1 - -
7 - - 1 1 1 - 23 1 - 1 1 1 -
8 - 1 - - - 24 1 1 - - -
9 - 1 - - 1 - 25 1 1 - - 1 -
10 - 1 - 1 - - 26 1 1 - 1 - -
11 - 1 - 1 1 - 27 1 1 - 1 1 -
12 - 1 1 - - 28 1 1 1 - -
13 - 1 1 - 1 - 29 1 1 1 - 1 -
14 - 1 1 1 - - 30 1 1 1 1 - -
15 - 1 1 1 1 - 31 1 1 1 1 1 -
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Rank of the matrix Fg as well as minimum and maximum values of the

condition number are reported. The value inf corresponds to an infinite condition
number, i.e. unobservable state. Configuration of measurement sensors that ensure
full observability, have rank 7. This holds for numbers 17, 19, 21, 23, 25-31. There
is no full observability in all other cases.

Table 2
Observability Analysis of the Measurement Systems Configurations
£ £ £
2 2 2
S|z 5 s |z 5 S| 2 5
® @ = ® @ = ® @ =
= = £ = = £ = = £
- et = - et = - et =
= s = < < = = = =]
N B2 R I - s e B2 g
© ] = © ] = © ] k=
g s T = s T = s E
< > =) < > =) < > =]
& 5 &) & 5 &) & 5 @)
w w w
= = =
=) =) =)
0 | 7 | Yes 2 1| a7 | Nl oting | 22 | 67 | N | ioto10v
always always
1 3-6 No inf 12 2-3 No inf 23 7 Yes 2.32-67
2 | 12| No inf 13| 57 | N lioio0) 24 | 67 | N | ioto10v
always always
3 4-6 No inf 14 3 No inf 25 7 Yes 3.05-111
4 | 12| No inf 15 | 5-7 Not i 1927 26 | 7 Yes | 10"-10"
always
5 a7 | Nl ozinr | 16 | 67 | N 10107 27 | 7 | Yes | 24267
always always
6 3 No Inf 17 7 Yes | 3.72-122]{ 28 | 7 Yes | 10"-10"
7 a7 | NVl qoninr | 18 | 67 | N li0m-107 ]l 29 | 7 | Yes | 2.41-73
always always
8 2 No inf 19 7 Yes | 3.10-67 [ 30 | 7 Yes | 10"-10"
9 | 46| No inf 20 | 6-7 Not i jo7ll 39 | 7 Yes | 2.24-67
always
10 | 2-3 No inf 21 7 Yes 2.61-79

STATE ESTIMATOR USING ASTRO-SENSORS

In the previous section, it was found out that the best observability conditions
has astro-measurement system even without involvement of other equipment. The
output of this system are quaternion components with discrete time step, therefore,
it is possible to correctly estimate their derivative, using regularizing operator. In
the simplest case regularizing operator for the derivative calculation of a function
given approximately, has the following form

R(y’): Vi _AJ’k—l , @1

where A is mesh width of function y discretization, error which is selected in
accord with the function y error. If A is more than astro-sensor quantization step,
than regularizing operator can be composed based on more than two points £ and
k—1. When A is smaller than the pitch of the signal entering astro-measurement

system, it is advisable to improve the accuracy of estimation by using two or more
astro-measurement systems.
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Then astro-sensors are querying with some time offset, it is possible to obtain
data with a suitable for (22) value of A and get stable value of the derivative. For
definiteness we assume that (21) gives acceptable approximation of the derivative.

[ ]
Then the first equation in (1) may be used to estimate the vector @, in which A is

replaced by a regularizing operator, evaluated in accordance to (21). We get the
overdetermined system for calculation of wj_;. To solve it we use Least Square

Method and get
O -1 = Ao -1 By =M g—1 Ry = Ao Ry + A3 41 Ry s
0 k1 =M -1 Ro+ A po1 Ry —Ap 1 Ry —A3 1Ry s (22)
O3 f—1 =hoj—1 Ry —Appoy Ry + Aoy Ry =351 Ry,

where R is a regularizing operator for calculating derivative of A, component,
and R;, R,, R are regularizing operators of component-vector A .

Considering (22) as initial condition for vector @ at point k —1 and using the
second equation in (1) it is possible to predict its value in the required for the
control point (e.g., point & or k+1 ). It is better to do this from a discrete
predictor, which is obtained from the second equation of (1) in the form

O =01 +AS _l(mu,k—l - ék—lek—1)~ (23)

We note here that measuring quaternion with less error allows to reduce the
parameter A and regularizing operator (21) more accurately approximates the
derivative. Reducing measurement errors may be achieved by applying various
filtering or averaging procedures when a large number of measurement data is
used.

CONCLUSIONS

As it was expected, magnetometer with three orthogonal magnetically
sensitive probes does not ensure practical observability. Adding local vertical
builder solves the observability problem with acceptable condition number.
According to the condition number analysis, there is no significant improvement in
the properties of estimator as a filter, if angular velocity sensors are added to the
system.

The most effective observability is ensured by astro-measurement system. It is
characterized by close to an absolute minimum (one) condition number. Moreover,
the simplest state estimator, which is described in this article, may be build using
astro-sensors.

According to the research carried out in this article, spacecraft attitude
parameters estimator should be constructed using only position measurements —
Krylov angles or quaternions.
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OBSERVABILITY ANALYSIS OF SPACECRAFTS’
ATTITUDE MEASUREMENT SYSTEMS
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Space Agency of Ukraine (Kiev)

’National Technical University of Ukraine “Kiev Polytechnical Institute” (Kiev)

Introduction. One of the important tasks for small spacecrafts is the

optimization of onboard measurement equipment, which on the one hand is not

excessive and on the other — allows to estimate all attitude parameters with
required accuracy.

The purpose of the article is to conduct observability analysis of the most

commonly used measurement systems, such as magnetometer, star and angular
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velocity sensors, local vertical builder in order to identify the minimum required
set of onboard measurement equipment, which ensures observability of the
spacecratft.

Approach and Methods. Measurement systems observability assessment
utilizes existing methods of dynamic systems observability theory and is based on
observation and spacecraft’s angular motion equations. Model of the spacecraft’s
motion is described using quaternion components as positional parameters. Since
the models are essentially nonlinear, obtaining the overall global observability
conditions for such system is a complex problem. Therefore, linearization
procedure is applied and local observability conditions are assessed based on the
rank and condition numbers of observability matrices of the linear approximation.

Results. Astro-measurement system ensures the most effective observability
and may be used as the simplest measurement system. Magnetometer with three
orthogonal magnetically sensitive probes does not ensure practical observability of
the system, unless local vertical builder is added.

Keywords:  State estimation, observability, quarternion, spacecraft,
magnetometer, star sensor, local vertical builder.
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