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Одним из важных аспектов построения высокоточных 
систем управления космическими аппаратами (КА) является выбор такого 
бортового измерительного комплекса, который бы гарантировал 
наблюдаемость системы и не являлся бы избыточным. В работе проведен 
анализ наблюдаемости наиболее распространенных бортовых 
измерительных приборов космических аппаратов, а именно — 
магнитометра, построителя местной вертикали, астродатчика и датчиков 
угловых скоростей. Оценивание пригодности и качества различных по 
составу измерительных комплексов системы управления КА основано на 
существующих методах теории наблюдаемости динамических систем с 
учетом уравнений наблюдения и динамики углового движения КА. 
Исследования показали, что наиболее эффективным с точки зрения 
наблюдаемости системы КА, является измерительный комплекс, 
состоящий из астродатчиков. 

Ключевые слова: оценивание состояния, наблюдаемость, 
кватернион, космический аппарат, магнитометр, астродатчик, построитель 
местной вертикали. 

 
Одним з важливих аспектів побудови високоточних 

систем керування космічнимими апаратами (КА) є вибір такого бортового 
вимірювального комплексу, який би гарантував спостережуваність систем 
та не був би надлишковим. В роботі проведено аналіз спостережуваності 
найбільш поширених бортових вимірювальних пристроїв космічних 
апаратів, а саме — магнітометра, побудовувача місцевої вертикалі, 
астродатчика та датчиків кутових швидкостей. Оцінка придатності та 
якості різних за складом вимірювальних комплексів КА ґрунтується на 
наявних методах теорії спостережуваності динамічних систем з 
урахуванням рівнянь спостереження та динаміки кутового руху КА. 
Дослідження показали, що найбільш ефективним з точки зору 
спостережуваності є вимірювальний комплекс, який складається з 
астродатчиків. 

Ключові слова: оцінювання стану, спостережуваність, 
кватерніон, космічний апарат, магнітометр, астродатчик, побудовувач 
місцевої вертикалі 

 
INTRODUCTION 
 

It is very important to choose a set of measurement equipment, which on the 
one hand is not excessive, and on the other — allows to estimate all attitude 
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parameters with required accuracy while designing precision spacecraft (SC) 
attitude control system (CS). The latter is achieved not only by proper selection of 
measurement system, but also by mathematical processing of measurement data, 
that ensures effective filtering of errors in the estimation of SC state parameters. 

This article is focused on the problem of the minimization of onboard 
equipment, which is especially important task for small spacecrafts. Suitability and 
quality of different measurement systems is assessed using existing methods of 
dynamic systems observability theory based on observation equations and 
spacecraft’s angular motion. Such approach to the determination of spacecraft’s 
attitude (in case of incomplete measurements) is particularly considered in [1], 
where the vector of parameters that characterizes the attitude and angular velocity 
is determined using local geomagnetic field characteristics. These characteristics 
are obtained by calculation on measurements received from magnetometer with 
three orthogonal oriented probes without involvement of other measurements. 
Moreover, in [2] authors have shown the possibility to determine SC attitude using 
only two (arbitrary) out of three magnetometer probes. Evaluation of observability 
in both cases was carried out by dynamic filtering [3]. Sufficiently to show 
observability of the full attitude parameters vector in case when SC attitude 
quaternion, obtained from star sensor measurements, which is known in each point 
of SC trajectory. Determination of the attitude and angular velocity only on results 
of onboard measurements obtained from star sensor without involvement of other 
devices is regarded in [4]. Kalman filter, which allows to effectively evaluate both 
the quaternion attitude and angular velocity, was used in this research. 
Furthermore, article [4] provides other of publications devoted to the solution of 
the same problem by analogous as well as other possible methods. 
 
PROBLEM STATEMENT 
 

For observability evaluation of different measurement systems combinations 
we have used an approach which is slightly different from those mentioned above. 
The approach is based on the condition of solvability of nonlinear system of 
equations, which are obtained from observation equations with the use of 
Lyapunov differential operator [5]. 

We have considered not the full list of existing measuring sensors, but only 
those ones which are the most commonly used in practice [6]. In particular, the 
observability of various combinations of the following devices have been explored: 

— Magnetometer with three orthogonally arranged magnetically sensitive 
probes;  

— Star sensors or different astro-measurement systems [7, 8, 9];  
— Sets of angular velocity sensors;  
— Builder of the local vertical. 
Since the most interest is focused on the combination of sensors, which 

provide incomplete direct or indirect information about the attitude parameters, we 
used the information on system dynamics, which is defined by the equations of SC 
angular motion. In addition, equations that describe the process of observation for 
the described above measuring systems are included. 

This will be presented in the first two sections below. In the third section will 
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be described observability assessment procedures which are used in the study along 
with their adaptation to the mathematical models. Results for the observability of 
various combinations of measurement systems, the simplest possible estimator 
based on astro-sensor and conclusions resulting from the carried out analysis are 
presented in the final section. 
 
MATHEMATICAL MODEL DESCRIPTION 
 

Model of Spacecrafts’ Angular Motion. Mathematical model of the SC angular 
motion may be written by using different coordinate systems and positional 
parameters of attitude (Krylov angles or normalized quaternion components). 
Establishment of observability or non-observability conditions does not depend on 
the choice of models, attitude parameters or coordinate system. 

However, due to significant nonlinearity of these models, there may be some 
difficulties in analysis of the observability using approximation of the models. 
Thus, if in the kinematic equations Krylov angles are used, then under certain 
parameters a mathematical singularity occurs, but when someone moves to another 
description, for example, using a normalized quaternion, this feature is eliminated. 

Nevertheless, preliminary studies have shown similar results for the 
parameters domain without singularity. Therefore, model with positional 
parameters as components of the quaternion is used in this paper. As coordinate 
systems we use the following orthogonal coordinate systems: SC related coordinate 

system (RCS) Oxyz  and certain inertial coordinate system (ICS ) uuu zyOx . 

Then, according to [10], under SC attitude we assume the orientation of RCS with 
respect to the orientation of ICS. We use the results of [11, 12, 13] and write the 
equation of angular motion of the spacecraft in case when angular coordinates are 
the components of the quaternion 

( )
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pu mJJmJ
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+ωω⋅−=ω

ωΛ=Λ
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where Λ  is a quaternion with components ( )TT λλ=Λ ,0 , ( )321 ,, λλλ=λT  which 
satisfies the normalization condition: 

( ) ( ) ( ) ( ) 12
0

2 =λ⋅λ+λ=Λ tttt T , (2) 

vector ( )T321 ,, ωωω=ω is composed of the projections iω , 3,2,1=i  of absolute 
SC angular velocity on RCS axis, J  — symmetric positive definite matrix 

0>= TJJ , which is a representation of SC inertia tensor in RCS with the respect 
to the center O  of RCS ; um  is a vector of control moments, and pm  is a vector 

of disturbing moments, which are defined by projections on the axis of the RCS; 
matrix ( )ΛB  of 34×  dimension and ω

(  with 33×  dimension have the following 
form:  
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where 3I  is an identity matrix 33× , λ
(

 — matrix which has the same 

representation as ω
(  but with 321 ,, λλλ  components. 

More detailed description of model (1) characteristics along with the 
normalization condition (2) are described in [11, 12, 13]. 

Observation Equations. To write the observations equations for definite 
measurement systems, we need the vectors transfer matrix for transition from ICS 

to RCS, expressed in terms of the quaternion Λ . If uv  and v  are column-vectors 

with components that are their projections on axis uuu zyOx  and Oxyz  
respectfully, then according to [13, 14] we have 

( )vSvu Λ= , (3) 

where ( )ΛS  is an orthogonal ( ) ( ) ( )( )1det,1 =ΛΛ=Λ− SSS T  33×  direction 

cosines matrix of the axes Oxyz  in uuu zyOx  which has the form  

( ) λλ+λλ−=Λ
(((

22 03IS , (4) 

with matrix λ
(

 having the described above representation. 
 
MEASUREMENT SYSTEMS DESCRIPTION 
 

Magnetometer. Magnetometer is certained to measure projections of the Earth 
magnetic field induction vector on three orthogonally arranged magnetic probes 
during the SC motion on the orbit. Typically, the magnetometer is made in a form 
of monoblock and is mounted on the SC so that the measurement axes are parallel 
to the axes of the base coordinate system (BCS), which may be the same as RCS or 
can be associated with it by (3) and (4). In this case the transition quaternion from 
the BCS to the RCS is strictly fixed, but under condition of flight may slightly be 
different from those that were installed on the Earth. For simplicity and due to the 
fact that the observability conditions are not affected by magnetometer disposition, 
we consider the case of coincidence of BCS and RCS. 

Such magnetometer allows to determine positional parameters of the attitude: 
Krylov angles or transition quaternion from ICS to RCS. It is assumed that at each 
point of the orbit trajectory components of the magnetic field in the ICS are known. 
Moreover, to determine the attitude it is sufficient to know only the direction of 

that vector, i.e. its direction cosines or vector ( ) ( ) ( )( )Ttttb γβα= cos,cos,cos0  

provided that ( ) ( ) ( ) 1coscoscos 222 =γ+β+α ttt . Then the equation of observation 
may be written as 

( ) ( )( ) ( )tbtSty 0⋅Λ= , (5) 
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where ( )ty  is a vector of direction cosines of the unit vector, which has the same 
direction as a vector of the measured magnetic field induction. The quaternion 
normalization condition (2) should be added to the (5) in order to determine current 
quaternion ( )tΛ  from the corresponding nonlinear equation using calculated ( )tb0  
and obtained from the measurements ( )ty . However, as it is well known, this 
problem cannot be solved uniquely. 

Astro-measurement system. Astro-measurement system is composed of one or 
more star sensors and each sensor in its field of vision registers n  stars ( 2≥n ). 
Usually astro-sensor measures angular coordinates of the axes of internal 
coordinate system (IntCS), which is directly tied to the sensor’s line of sight in the 
ICS. The number of used astro-sensors does not affect the observability conditions. 
Therefore, we consider a single device, for which IntCS coincides with the RCS. 
We assume that as a result of observations of several space objects (stars, the Sun) 
and use of point algorithms described, for example, in [7, 15], on the output of the 
astro-measurement system we get a normalized quaternion ( )tΛ , which contains 
some component-wise errors. 

Angular Velocity Sensors. One of the methods of construction a complete set 
of the angular velocity sensors is a monoblock, comprising four identical fiber-
optic gyroscopes, which allows the most effective estimation of all three 
components of SC angular velocity. Therefore, the equations of observation of this 
set are quite simple. They contain values of angular velocity ( )tω  components 
measured with some error.  

However, when estimating the observability, for the sake of research 
completeness, we will use individual components of the angular velocity. 

Local vertical builder. On a number of satellites local vertical builder (LVB) 
is widely used as a position sensor, which effectively measures the projection of 
the uOy  axis unit vector on Ox  and Oz  axis, while the projection on Oy  axis is 
not measured. Then the observation equations that describes the process of 
measurements carried out with LVB, can be written as  

( ) ( ) ( )tvSGty v ζ+Λ= 0 , (6) 

where ( )ty  is a measurement vector, 0v  is a vector with components 

( )Tv 0,1,00 = , and ( )tζ  is a vector of measurement error, vG  — matrix of 32×  
dimension written as follows 









=

100
001

vG . 

 
OBSERVABILITY CONDITIONS 
 

The above equations of spacecraft angular motion and some observation 
equations are nonlinear. Obtaining the overall global observability conditions for 
such systems is a complex problem today. Therefore, the most appropriate and 
constructive approach to calculate the output time derivatives [5] is approximate 
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analysis using linearization procedure and local observability conditions. Consider 
a system described in state-space form as 

( )
( ),,,

,,,
tuxhy
tuxfx

=
=&

, (7) 

with state vector Rnx∈ , measurement vector Rmy ∈ ; f  and h  are continuous 
and differentiable as many times as required functions of their arguments — 
namely this is the case considered in the problem. In order to calculate (or 
measure) time derivative, we may write the local observability conditions. Let’s 
write Lyapunov differential operator, defined on the system trajectory (7) 

[ ] [ ] [ ] [ ]
t

u
u

f
x

L
∂
∗∂

+
∂

∗∂
+

∂
∗∂

= &* , (8) 

where [ ]*  denotes any differentiable vector-function of its arguments. As such 
function we take y written in the form of (7) and differentiate the observation 
equation with respect to of n-1 times. We get  

[ ] ( ) hLyLhhLyhy nn ⋅==== −− 11,,K& . (9) 

Then ( )tx , which should be found according to the observability problem 
statement, is the solution of equations system (9). For the system (9) unique 
solvability in these conditions is necessary and sufficient that 

nhL
x

Lh
xx

hrankrankD
T

n
TT

=



















∂
∂









∂
∂









∂
∂

= −1L , (10) 

where 
x
h

∂
∂ , L,Lh

x∂
∂  are Yakobi matrices, which are calculated on the solution 

( )txx =  with known input (control) ( )tu . As a result, using rank criteria (10) we 
can consider only a particular motion observability. Therefore, assessing systems 
observability on the base of rank criteria (10) is not a constructive approach. If we 
have a linear system 

BuAxx +=& , 

with linear observation equations 

CuHxy += , 

where HCBA ,,,  are constant matrices of corresponding dimensions, then criteria 
(10) given that 

[ ] [ ] ( ) [ ]u
u

BuAx
x

L &
∂

∗∂
++

∂
∗∂

=* , 

takes the well-known form 
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( ) ( ) nHAHAHAHrank TnTTTTTT =



 −12

L . (11) 

If matrices HCBA ,,,  are functions of time, then (10) will take the form 

[ ] nrank T
n

TT =ΠΠΠ −110 K , (12) 

where 1,1,),( 110 −=⋅Π+Π=Π=Π −−
•

nkAtH kkk . 
Each block in (11, 12) has mn ×  dimension (where m  is dimension of vector 

y ), and overall dimension of matrix in square brackets equals to mnn ⋅× . In 
contrast to (10) the criterion (11) is global condition and gives full or partial 
(incomplete) observability of the system on all system trajectories. 

Assume that functions ( )⋅f  and ( )⋅h  from (9) can be written as : 

( ) ( )
( ) ( ),,,,,

,,,,,

tuxhCuHxtuxh

tuxfBuAxtuxf
NL

NL

++=

++=
 (13) 

where HCBA ,,,  are matrices of corresponding dimensions. Vector-functions 
NLf  and NLh  have nonlinearity with respect to variables ux,  of at least second-

order (it is assumed that ( ) ( ) 0,0,0,0,0 == thtf ). The expansion (13) may be 
carried out not only near zero, but in the neighborhood of any stationary state 

ss ux , , with the same properties of functions NLf  and NLh . Observability matrix 
Γ  provided (13) can be represented as follows 

( )( ) ( )( ) ( )( ) 



 +++=Γ −

− T
n

nTT tuxDHAtuxDHAtuxDHA ,,,,,, 1
1

2
2

1 L , (14) 

where matrices 1,1, −= niDi  have at least linearly dependent from ux,  and 
0=iD  providing that 0== ux . Since expressions for ( )tuxDD ii ,,=  are 

cumbersome and are not used in future sections, we will not provide them here. 
Assume that the linearized system is fully observed, i.e. 

( ) ( ) nHAHAHArankrank TnTTTTT =



=Γ

−12
0 L . (15) 

It means that among mn ⋅  columns of matrix 0Γ  there are such n  columns, 
that square matrix determinant composed from these columns, will not be equal to 

zero. Let us construct matrix **
0

* D+Γ=Γ  from these n  columns, where *D  

consists of the same columns as matrix *
0Γ . According to the properties of matrix 

iD , 0* =D  while 0== ux  . Since matrix *
0Γ  is nonsingular, we may write  

( ) 





 ⋅Γ+Γ=Γ

− *1*
0

*
0

* DIn . 
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According to the perturbation theory, matrix ( ) *1*
0 DIn ⋅Γ+

−
 is nonsingular for 

any matrix norm with condition ( ) 1*1*
0 <⋅Γ

−
D . The condition ( ) 1*1*

0 <⋅Γ
−

D  

may be achieved by using small values of x  and u . Thus, full observability 
condition for all trajectories defined by linearized equations and which ensure 

fulfillment of ( ) 1*1*
0 <⋅Γ

−
D  follows from (15). 

Although the resulting observability condition using linear approximation is 
local, but it remains valid for a set of solutions near the equilibrium. If we cover 
the entire set of acceptable Xx∈  and Uu ∈  with close enough stationary points 

ss ux ,  such that in the neighborhood of each of them the system is observable, and 

the intersection of sets defined by the condition ( ) 1*1*
0 <⋅Γ

−
D  fully contain X  

and U , then we have sufficient observability condition of the original nonlinear 

system. If exist such ss ux ,  , where linear system is not fully observable, then in 
order to find precisely the border between observable and non-observable area 
more complex analysis may be required. In this case, instead of rank criteria of 

observability, we will consider condition number of observability matrices *
0Γ  

( *
0Γcond ). The concept of practical observability, based on the concept of practical 

rank of the matrix is introduced [16]. We consider the system to be practically 
observable, if the inverse value of observability matrix condition number is greater 
than or equal to a specified value ε . The value of ε  is usually agreed with existing 
uncertainties in the measurements and motion equations. Than areas of X  and U  

where ( ) 1*
0

*
0

−ε≤Γ=Γχ cond  are practically observable. Singular value 
decomposition may be used to evaluate practical observability of a rectangular 
matrix 0Γ ,  

TQPΣ=Γ0 , (16) 

where [ ] nnRppP ×∈= 21 ,,K  and [ ] nmnm
mn RqqQ ×

⋅ ∈= ,,1 K  are orthogonal 

matrices, i.e. 




≠
=

=⋅
ji
ji

pp j
T
i  if,0

 if,1
 and 





≠
=

=⋅
ji
ji

qq j
T
i  if,0

 if,1
, nnR ×  and 

nmnmR ×  are matrix spaces of nn ×  and nmnm×  dimensions respectfully, 
( )ndiag σσ=Σ ,,1 K  is a diagonal matrix of singular values arranged in 

descending order, i.e. 021 ≥σ≥≥σ≥σ nK . Singular values of matrix 0Γ  are 

exactly half-lines of hyper ellipsoid Ε  defined by the ratio { }1: 20 =Γ=Ε xx .  

Condition number of matrix *
0Γ  according to [16] for Euclidean norm 

(Frobenius norm) is given by  
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( )
nσ

σ
=Γχ 1*

02 . 

Condition number for different norms are equivalent in sense that there are 
such constants 1с  and 2с , that  

2221 χ≤χ≤χ α сс , 

where α  defines other norms. For example, for .,1:1 21 nс
n

с ===α  

Based on condition number we make judgment about sensitivity of the 
estimation algorithm to errors in measurement data and to disturbances equations 

in motion. As 1*
0 ≥Γcond  , then the closer )( *

0Γχ  to 1, the more effective noise 
filtering is achieved for any estimation algorithm. Therefore, when evaluating 
observability using various combinations of measurement sensors not only the rank 
of the observability matrices of the linear approximation will be assessed, but also 
their condition numbers. The consistency issue in condition number and available 
errors in the data and equations should be taken into account when estimation 
algorithms are developed. 
 
OBSERVABILITY ANALYSIS OF DIFFERENT MEASUREMENT SYSTEMS 
 

Equation of spacecraft angular motion and observation equation, that describe 
the processes of measurement may be expressed as (14), i.e with separated linear 
part. First, it is necessary to select equilibrium state defined by nonlinear system of 
equations (1). Set of all possible equilibrium states is defined by the condition  

( ) ( )TETEE 0,, Λ=ωΛ , 

i.e. any quaternion which satisfies the normalization condition with zero angular 

velocity components satisfy the equations of equilibrium. Quaternion EΛ  defines 
position of RCS with respect to ICS that is regarded as some initial state for the 
perturbed angular motion. Than normalized quaternion Λ  will define position of 
RCS with respect to CCS for this perturbed motion. A purely formal relation 

Λ+Λ=Λ xE , where Λx  is some four-dimensional vector ),,,( 3210 xxxxx =Λ  

(not a quaternion), which for small Λx  may be considered as some estimation 

deviation of quaternion EΛ  from Λ . Wherein the following equation, arising from 
the normalization condition for Λ , must be fulfilled by: 

( ) 0
2
1 2

3
2
2

2
1

2
033221100 =++++λ+λ+λ+λ xxxxxxxx EEEE . (17) 

If formally substitute Λ+Λ=Λ xE , ω=ω x  into (1), then equation of 

perturbed angular motion near ( )0,EΛ  may be written as (13). 
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( ) ( )xf
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ω
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where 33O  and 43O  are zero matrices of 33×  and 34×  dimension respectfully, 

( )
( )

















⋅−

⋅
=

ωω−

ωΛ

JxxJ

xxR
xf NL

(1
2
1

 is quadratic vector-function. Equations (18) should be 

considered together with (17). 

Let us choose in four-dimension set { }1: =ΛΛ EE  a points collection { }E
iΛ  in 

the neighborhood of which the normalization condition is satisfied with acceptable 
error. The totality of these neighborhoods gives all set of feasible Λ . It is not 
difficult to be done, since set of all Λ  is bounded. The partition should be done in 

such a way, that quadratic vector-functions ( )xf NL  in the neighborhood of points 
E
iΛ  are small enough allowing to carry out practical observability estimation using 

matrix 0Γ  (16) i.e. the linear approximation. 
In addition to the stationary states, equations (1) allow nonstationary motion, 

near which it is also possible to linearize the system and to evaluate its 
observability. 

Assume that the pair ( ))(),( tt EE ωΛ  corresponds to some nominal motion, in 
the neighborhood of which equations of perturbed motion may be written by 
analogy with (18). Than similar to (12) observability matrix Γ  may be constructed 
in the neighborhood of nominal motion. Also for nominal and perturbed motion 
corresponding representation of observation equations are written. Then, for each 
time point from (12) we may estimate complete state vector observability for a 
selected set of measurements, i.e. determine what areas of the trajectory are 
observable and which are not. Such estimation will be global for the selected 
nominal orbital motion. Approach similar to this was used in observability analysis 
in [1, 2]. However, observability analysis is offered to be carried out locally on 

time intervals where )(tEΛ  and )(tEω  vary so weakly that can be considered as 

stationary within these intervals. If, in addition to this, assume that )(tEω  is small 

enough and includes linear terms, which corresponds to the product of Eω  and Λx  
components , into expression NLf  due to their small values, we will obtain (18) 
with more complex representation of NLf . As a result, an observability analysis 
may be done for all valid nominal mode subsets, i.e all the feasible orbital 
trajectories in general.  

Definitely, taking into account terms with Eω  in the linear part, that can 
improve observability conditions, but due to its small value, the condition number 
will not change significantly (and in the case of it infinity can become finite, but 
still big). In other words, unobservable cases in the proposed approach can become 
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poorly observable when taking into account Eω , and estimation algorithms will 
become very sensitive to errors in measurement data. 

Therefore, observability analysis using (18) for the given measurement system 

will be sufficient if on all feasible set { }E
iΛ  full observability conditions are 

fulfilled. If subsets { }E
iΛ  with no full observability or with big condition number 

exist, then trajectories which go through this subset can be unobservable with such 
values of parameters and corresponding time intervals. Though more rigorous 
evaluation of observability carried out with taking into account the non-stationarity 
may have a significant impact on the observability. However, spacecraft control 
system usually includes slow motion as well. Therefore, the proposed observability 
analysis is more general with respect to the different control system operation 
modes. 

From the foregoing it follows that the observability estimations obtained using 
proposed approach are more suitable from the practical point of view, than those 
obtained on the basis of dynamic filtering. 

Using the considered approach, the matrix will have the following form: 









=

3334

4344
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A , 

where 443433 ,, OOO  are zero matrices of 44,43,33 ×××  dimensions 
respectfully, matrix 43A  has the following representation 
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It is necessary to include the normalization condition (17) into the observation 
equation at any configuration of measuring system. For example, for magnetometer 
taking into account normalization condition in decomposition (12) matrix H  is 
following 

[ ]4344 OHH = , (19) 
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where ( )Txxx ,0=Λ , ( )321 ,, xxxxT =  and ( )Txxxx 654 ,,=ω . 
It should be noted that in fact we have ( )tα=α , ( )tβ=β , ( )tγ=γ . However, 

on the observation interval, where )(tEΛ  and )(tEω  are almost constant, direction 
of the magnetic field also varies a little and therefore may be considered under the 
problem solution as stationary related to some small part of the spacecraft 
trajectory. Taking into account an existing error between calculated magnetic field 
of Earth and its real value this is quite acceptable. 

Matrix H  and vector function NLh  are written analogously with other 
combinations of measuring devices. 

In the observability analysis using the described approach, stationary points 

for E
iΛ  were determined based on the values of Krylov angles ( )θψγ ,, , which 

varied between 

[ ]ππ−∈θψ



 ππ
−∈γ ,,,
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2
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Then according to [11] quaternion values in the corresponding points were 
defined by formulas  
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 (20) 

Normalization conditions in this case are fulfilled automatically.  
When the measurement complex include magnetometer, properties of matrix 

H  in (19) are additionally analyzed depending on the orientation of the Earth's 
magnetic field with respect to the ICS. Computational experiments were conducted 
in order to determine such angles γβα ,,  for which matrix condition number is 
the best and the worst. It should be noted that matrix H  in (19) is either singular 
(rank less than 3) or very ill-conditioned. In the latter case the approximate 
normalization condition took effect under the linearization. This was confirmed by 
verifying matrix H  singularity, which was built when the positional orientation 
parameters were Krylov angles ( )θψγ ,, . In this case, the rank of the matrix H  
for all γβα ,,  was less than three, and the system was unobservable at steady 
approximation. While using magnetometer in combination with other 
measurements the worst and the best orientation of the magnetic field with respect 
to an inertial coordinate system were determined based on the condition number. 

Moreover, for parameter ( )θψγ ,,  without singularity in kinematic equations 
based on Krylov angles, comparison of observability results for two models was 
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conducted: using Krylov angles and using (17), (18). Results turned out to be 
similar, which confirmed the validity of the formalism (17), (18). 

For different combinations of measurement equipment matrices 0Γ  were 

formed. Using the SVD-transformation, matrix *
0Γ  was separated from matrix 0Γ  

and condition number ( )*
02 Γχ  was calculated. Including astro-sensor into the 

system in addition to other measurement equipment led to *
0Γ  be mainly formed 

from corresponding to astro-sensor columns. Wherein the condition number of 

matrix *
0Γ  for astro-sensor was equal to 2 and was the best in relation to all other 

possible combinations. Therefore, astro-measurement system gave the best 
observability result due to conditionality stability of the inverse problem. 

From all other measurement sensors, different configurations of measurement 
complex were formed and presented in table 1. There are 31 such possible 
combinations. “1” denotes that corresponding sensor is included into the 
configuration, «-» denotes that the sensor is absent. Observability results for all 
shown in table 1 configurations are presented in table 2 for different equilibrium 

values E
iΛ  in points of set 1=ΛE . In table 2 “+” and “-“ denote that the system 

is observable or not observable respectively, “+/-“ denotes that such combination 
of measurement equipment is not always observable. 

Table 1 

Possible Configurations of Measurement Systems 
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0 - - - - - 1 16 1 - - - - - 
1 - - - - 1 - 17 1 - - - 1 - 
2 - - - 1 - - 18 1 - - 1 - - 
3 - - - 1 1 - 19 1 - - 1 1 - 
4 - - 1 - - - 20 1 - 1 - - - 
5 - - 1 - 1 - 21 1 - 1 - 1 - 
6 - - 1 1 - - 22 1 - 1 1 - - 
7 - - 1 1 1 - 23 1 - 1 1 1 - 
8 - 1 - - - - 24 1 1 - - - - 
9 - 1 - - 1 - 25 1 1 - - 1 - 

10 - 1 - 1 - - 26 1 1 - 1 - - 
11 - 1 - 1 1 - 27 1 1 - 1 1 - 
12 - 1 1 - - - 28 1 1 1 - - - 
13 - 1 1 - 1 - 29 1 1 1 - 1 - 
14 - 1 1 1 - - 30 1 1 1 1 - - 
15 - 1 1 1 1 - 31 1 1 1 1 1 - 
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Rank of the matrix *
0Γ  as well as minimum and maximum values of the 

condition number are reported. The value inf  corresponds to an infinite condition 
number, i.e. unobservable state. Configuration of measurement sensors that ensure 
full observability, have rank 7. This holds for numbers 17, 19, 21, 23, 25–31. There 
is no full observability in all other cases. 

Table 2 

Observability Analysis of the Measurement Systems Configurations 
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0 7 Yes 2 11 4-7 Not 
always 1011- inf 22 6-7 Not 

always 1011- 1017 

1 3-6 No inf 12 2-3 No inf 23 7 Yes 2.32-67 

2 1-2 No inf 13 5-7 Not 
always 1011- 1039 24 6-7 Not 

always 1011- 1017 

3 4-6 No inf 14 3 No inf 25 7 Yes 3.05-111 

4 1-2 No inf 15 5-7 Not 
always 1011- 1027 26 7 Yes 1011- 1013 

5 4-7 Not 
always 1012- inf 16 6-7 Not 

always 1011- 1017 27 7 Yes 2.42-67 

6 3 No Inf 17 7 Yes 3.72-122 28 7 Yes 1011- 1013 

7 4-7 Not 
always 1011- inf 18 6-7 Not 

always 1011- 1017 29 7 Yes 2.41-73 

8 2 No inf 19 7 Yes 3.10-67 30 7 Yes 1011- 1012 

9 4-6 No inf 20 6-7 Not 
always 1011- 1017 31 7 Yes 2.24-67 

10 2-3 No inf 21 7 Yes 2.61-79     

 
STATE ESTIMATOR USING ASTRO-SENSORS 
 

In the previous section, it was found out that the best observability conditions 
has astro-measurement system even without involvement of other equipment. The 
output of this system are quaternion components with discrete time step, therefore, 
it is possible to correctly estimate their derivative, using regularizing operator. In 
the simplest case regularizing operator for the derivative calculation of a function 
given approximately, has the following form 

( )
∆

−
=′ −1kk yyyR , (21) 

where ∆  is mesh width of function y  discretization, error which is selected in 
accord with the function y  error. If ∆  is more than astro-sensor quantization step, 
than regularizing operator can be composed based on more than two points k  and 

1−k . When ∆  is smaller than the pitch of the signal entering astro-measurement 
system, it is advisable to improve the accuracy of estimation by using two or more 
astro-measurement systems.  
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Then astro-sensors are querying with some time offset, it is possible to obtain 
data with a suitable for (22) value of ∆  and get stable value of the derivative. For 
definiteness we assume that (21) gives acceptable approximation of the derivative. 

Then the first equation in (1) may be used to estimate the vector ω , in which 
•
Λ  is 

replaced by a regularizing operator, evaluated in accordance to (21). We get the 
overdetermined system for calculation of 1−ωk . To solve it we use Least Square 
Method and get 

,
,

,

01,311,221,131,01,3

11,301,231,121,01,2

21,331,201,111,01,1

RRRR
RRRR

RRRR

kkkkk

kkkkk

kkkkk

⋅λ−⋅λ+⋅λ−⋅λ=ω

⋅λ−⋅λ−⋅λ+⋅λ=ω

⋅λ+⋅λ−⋅λ−⋅λ=ω

−−−−−

−−−−−

−−−−−

 (22) 

where 0R  is a regularizing operator for calculating derivative of 0λ  component, 
and 321 ,, RRR  are regularizing operators of component-vector λ . 

Considering (22) as initial condition for vector ω  at point 1−k  and using the 
second equation in (1) it is possible to predict its value in the required for the 
control point (e.g., point k  or 1+k  ). It is better to do this from a discrete 
predictor, which is obtained from the second equation of (1) in the form  

( )111,
1

1 −−−
−

− ωω−∆+ω=ω kkkukk JmJ ( . (23) 

We note here that measuring quaternion with less error allows to reduce the 
parameter ∆  and regularizing operator (21) more accurately approximates the 
derivative. Reducing measurement errors may be achieved by applying various 
filtering or averaging procedures when a large number of measurement data is 
used.  
 
CONCLUSIONS 
 

As it was expected, magnetometer with three orthogonal magnetically 
sensitive probes does not ensure practical observability. Adding local vertical 
builder solves the observability problem with acceptable condition number. 
According to the condition number analysis, there is no significant improvement in 
the properties of estimator as a filter, if angular velocity sensors are added to the 
system.  

The most effective observability is ensured by astro-measurement system. It is 
characterized by close to an absolute minimum (one) condition number. Moreover, 
the simplest state estimator, which is described in this article, may be build using 
astro-sensors. 

According to the research carried out in this article, spacecraft attitude 
parameters estimator should be constructed using only position measurements — 
Krylov angles or quaternions. 
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OBSERVABILITY ANALYSIS OF SPACECRAFTS’ 
ATTITUDE MEASUREMENT SYSTEMS 
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2National Technical University of Ukraine “Kiev Polytechnical Institute” (Kiev) 

Introduction. One of the important tasks for small spacecrafts is the 
optimization of onboard measurement equipment, which on the one hand is not 
excessive and on the other — allows to estimate all attitude parameters with 
required accuracy.  

The purpose of the article is to conduct observability analysis of the most 
commonly used measurement systems, such as magnetometer, star and angular 
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velocity sensors, local vertical builder in order to identify the minimum required 
set of onboard measurement equipment, which ensures observability of the 
spacecraft.  

Approach and Methods. Measurement systems observability assessment 
utilizes existing methods of dynamic systems observability theory and is based on 
observation and spacecraft’s angular motion equations. Model of the spacecraft’s 
motion is described using quaternion components as positional parameters. Since 
the models are essentially nonlinear, obtaining the overall global observability 
conditions for such system is a complex problem. Therefore, linearization 
procedure is applied and local observability conditions are assessed based on the 
rank and condition numbers of observability matrices of the linear approximation. 

Results. Astro-measurement system ensures the most effective observability 
and may be used as the simplest measurement system. Magnetometer with three 
orthogonal magnetically sensitive probes does not ensure practical observability of 
the system, unless local vertical builder is added. 

Keywords: State estimation, observability, quarternion, spacecraft, 
magnetometer, star sensor, local vertical builder. 
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