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УДК 681.5 

ADAPTATION AND LEARNING IN SOME CLASSES OF 
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International Research and Training Center for Information Technologies and 
Systems of the National Academy of Science of Ukraine and Ministry of Education and 
Sciences of Ukraine, Kiev, Ukraine 

Рассмотрены задача обучения нейросетевых моделей для 
идентификации неопределенных нелинейных систем в стохастической 
среде и задача адаптивного управления линейным многомерным объектом 
без памяти с произвольным матричным коэффициентом усиления при 
наличии нерегулярных ограниченных возмущений, уровни которых 
априори неизвестны. Установлены достаточные условия сходимости 
алгоритма обучения нейронных сетей и асимптотические свойства 
алгоритма адаптивного управления многомерным объектом. Полученные 
результаты являются фундаментальными. 

Ключевые слова: нейронная сеть, градиентный алгоритм 
обучения, сходимость, многомерный объект без памяти, алгоритм 
адаптивного управления, ограниченность сигналов. 

Розглянуто задачу навчання нейромережних моделей для 
ідентифікації невизначених нелінійних систем у стохастичному 
середовищі та задачу адаптивного керування лінійним багатовимірним 
об'єктом без пам'яті з довільним матричним коефіцієнтом підсилення за 
наявності нерегулярних обмежених збурень, рівні яких апріорі невідомі. 
Встановлено достатні умови збіжності алгоритму навчання нейронних 
мереж, а також асимптотичні властивості алгоритму адаптивного 
керування багатовимірним об'єктом. Одержані результати є 
фундаментальними. 

Ключові слова: нейронна мережа, градієнтний алгоритм 
навчання, збіжність, багатовимірній об'єкт без пам'яті, алгоритм 
адаптивного керування, обмеженість сигналів. 

 
INTRODUCTION 
 

Since the appearance of the fundamental works [1, 2], substantial progress has 
been achieved during past decades in the area of identification and learning 
automatic systems. This research direction remains actual up to now because of its 
importance from both theoretical and practical points of view. In last time, new 
results for designing adaptive identification and control systems have been derived 
by the Ukrainian researchers including one of the authors and summarized in the 
books [3, 4]. 

Over the past years, interest has been increasing toward the use of multilayer 
neural networks as adjustable models for the adaptive identification of nonlinearly 
parameterized dynamic systems [5–8]. Several learning methods for updating the 
weights of neural networks have been advanced in literature. Most of these 
methods rely on the gradient concept [8]. Although this concept has been 
successfully used in many empirical studies, there are very few fundamental results 
dealing with the convergence of gradient algorithms for learning neural networks. 
One of these results is based on utilizing the Lyapunov stability theory [6, 9].  
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The asymptotic behaviour of online adaptive gradient algorithms for the 
network learning has been studied by many authors. In particular, White [10] 
investigated the convergence of the learning process for the so-called feedforward 
network models with single hidden layer by using the stochastic approximation 
theory. The convergence results have been derived in [11–17] among many others 
provided that input signals have a probabilistic nature. In their stochastic approach, 
the learning rate goes to zero as the learning process tends to infinity. 
Unfortunately, this gives that the learning goes faster in the beginning and slows 
down in the late stage. 

The convergence analysis of learning algorithm with deterministic (non-
stochastic) nature has been given in [18–23]. In contrast to the stochastic approach, 
several of these results allow employing a constant learning rate [20, 24]. However, 
they assume that learning set must be finite whereas in online identification 
schemes, this set is theoretically infinite. To the best of author’s knowledge, there 
are no general results in literature concerning the global convergence properties of 
training procedures with a fixed learning rate applicable to the case of infinite 
learning set. 

The distinguishing feature of multi-layer neural networks is that they describe 
some nonlinearly parameterized models needed to be identified. This leads to 
difficulties in deriving their convergence properties for a general case. To avoid 
these difficulties in non-stochastic case, the assumption that similar nonlinear 
functions need to be convex (concave) is introduced in [25]. However, such an 
assumption is not appropriate for neural network’s description of nonlinearity. 

A popular approach to analyze the asymptotic behavior of online gradient 
algorithms in stochastic case is based on the Martingale convergence theory [26]. 
This approach has been exploited in [27] to derive some local convergence in 
stochastic framework for standard online gradient algorithms with the constant 
learning rate used for updating the parameters (weights) of neural networks 
models. 

It is well known that the design of an adaptive or of other advanced control 
systems requires a model that gives an accurate description of the plant to be 
controlled. Within the so-called generalized inverse model-based approach, a new 
perfect controller has recently been devised in [28] to stabilize an arbitrary multi-
input multi-output memoryless plant whose are assumed to be known. To cope 
with an uncertain multivariable plant having the nonsingular matrix gain, the 
standard adaptive control algorithms can directly be exploited in adjusting its 
inverse model [29, item 4.2.3°]. See also [4, subsect. 4.2]. However, they are quite 
not admissible if this matrix gain becomes singular as it is noted in the textbook 
[30, item 5.2.3]. 

Recently, a new adaptive control method to dealing with the possibly singular 
matrix gain of the linear multivariable plant in the presence of non-stochastic upper 
bounded disturbance has been advanced in [31]. 

This paper is an extension of recent results of [27, 31] related to the adaptation 
and learning algorithms in certain classes of the identification and control systems 
using the gradient concept. Specifically, the purpose of the paper is to establish the 
global convergence conditions of the standard gradient online learning algorithm in 
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the two-layer neural network model by utilizing the probabilistic asymptotic 
analysis. Also, it is required to derive the convergent adaptive control algorithm 
guaranteeing the boundedness of the signals in the closed-loop system which 
contains the multivariable memoryless plant with an arbitrary matrix gain in the 
presence of unmeasurable disturbances whose bounds are unknown. 
 
STATEMENT OF THE PROBLEMS 
 

Two different but close problems related to the adaptation and learning 
algorithms above mentioned are stated and solved. 

The problem of analyzing the asymptotic properties of the online gradient 
learning algorithm in the neural network model. Let 

))(()( nxFny =  (1) 

be the nonlinear equation describing a complex system to be identified. In this 

equation, IR)( ∈ny  and Nnx IR)( ∈  are the scalar output and the so-called state 
vector, respectively, available for the measurement at each nth time instant 

),,2,1( K=n  and IRIR: →NF  represents some unknown nonlinear mapping. 
(Note that )(nx  may include the current inputs of this system and possibly its past 
inputs and also outputs; see [1, subsect. 5.15].) Without loss of generality, one 
supposes that the nonlinearity  

)(xFy =  (2) 

is the continuous and smooth function on a bounded but infinite set NX IR⊂  
).diam( ∞<X  

To approximate (2) by a suitable nonlinearly parameterized function, the two-
layer neural network model containing M  )1( ≥M  neurons in its hidden layer is 
employed. The inputs to the each jth neuron of this layer at the time instant n  are 
the components of ).(nx  Its output signal at the nth time instant is specified as 

,)(σ)(
1

)1()1()1(










+= ∑

=

N

i
iijjj nxwbny  ,,,1 Mj K=  (3) 

where )(nxi  denotes the ith component of ),(nx  and )1(
ijw  and )1(

jb  are the weight 

coefficients and the bias of this jth neuron, respectively. )(σ ⋅  denotes the so-called 
activation function defined usually as the sigmoid functions 

)exp(1
1)(σ

s
s

−+
=  (4) 

or 

).(tanh)(σ ss =  (5) 
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There is only one neuron in the output (second) layer, whose inputs are the 
outputs of the hidden layer’s neurons. The output signal of second layer, ),()2( ny  
at the time instant n  is determined by 

,)()( )2(

1

)1()2()2( bnywny
M

j
jj += ∑

=
 (6) 

where )2()2(
1 ,, Mww K  are the weights of this neuron and )2(b  is its bias. 

Since s)(σ ⋅  defined by (4) and (5) are nonlinear, it follows from (3), (6) that 

)()2( ny  is the nonlinear function depending on )1( −nx  and also on the 
)1)2(( ++NM -dimensional parameter vector 

.],,,

,,,,,,,,[

)2()2()2(
1

)1()1()1(
1

)1(
1

)1(
1

)1(
11

T
M

MNMMN

bww

bwwbwww

K

MKKK=
 (7) 

To emphasize this fact, define the output signal of the neural network in the 
form 

)),((NN)()2( wnxny =  (8) 

using the notation .IRIRIR:NN 1)2( →× ++NMN  Taking into account that the 
neural network plays the role of a model of (1), rewrite (8) as follows: 

).),((NN)(mod wnxny =  (9) 

Now, define the variable 

),(NN)( wxxFe −=  (10) 

representing the discrepancy between the nonlinearity (2) and its neural network’s 
model for a fixed .w  Due to (1), it yields the current model error 

)),((NN)()( wnxnyne −=  (11) 

which can be measured at the nth time instant. Further, introduce the usual 
quadratic loss function 

.)],(NN)([),( 2wxxFwxQ −=  (12) 

To do an adaptation of the neural network model to the uncertain system (1), 
the standard online gradient learning algorithm  

))1(),(()(η)1()( −∇−−= nwnxQnnwnw w  (13) 

taken, for example, from [1, 8] is utilized. In this algorithm, ))1(),(( −∇ nwnxQw  
denotes the gradient of ),( wxQ  with respect to w  at )1( −= nww  for given 

),(nxx =  and )(nη  is the learning rate (step size) of (13). Thus, (3), (6), (8) and 
(13) together with (9) and (12) describe the learning system necessary for the 
adaptive identification of (1). Suppose )}({ nx  is a sequence of vectors appearing 
randomly in accordance with some probability density function )(xp  such that  
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.1)(∫ =X dxxp  

Furthermore, )(xp  has the following properties: 

∫ ′ >=′∈ X dxxpXnxP 0)(:})({  

for any subset XX ⊂′  whose dimension is ,N  and 

∫ ′′ ==′′∈ X dxxpXnxP 0)(:})({  

if ,dim NX <′′  where }{⋅P  denotes the probability of corresponding random 
event. 

Additionally, it is assumed that )(xp  represents a continuous function which 
may become zero only at some isolated points on .X  

Now, introduce the performance index 

)},({)( wxQEwJ =  (14) 

which evaluates the quality of learning process with ),( wxQ  given in (12). In this 
expression, 

∫ −= X dxxpwxxFwxQE )()],(NN)([:)},({ 2  

denotes the expectation of ),( wxQ  with respect to the random s.x  
The following problem is here stated. It is required to derive the conditions 

under which )}({ nw  caused by the learning algorithm (13) will converge in the 
sense that 

)(inf))(( wJnwJ
w

→      as ∞→n  (15) 

almost sure (a.s.) for any initial ),0(w  where ))(( nwJ  is determined by (14) for 
).(nww =  

The problem of designing the adaptive control system which contains the 
linear memoryless plant with arbitrary matrix gain. Now, consider the linear 
multivariable memoryless plant described by 

,nnn vBuy +=  (16) 

where TN
nnn yyy ],,[ )()1( K=  is the N-dimensional output vector to be measured at 

nth time instant, TN
nnn uuu ],,[ )()1( K= is the N-dimensional vector of unmeasurable 

disturbances and 
















=

NNN

N

bb

bb
B

K

KKK

K

1

111
 (17) 

is an arbitrary NN ×  matrix gain. 
It is assumed that the elements of the matrix B  in (17) are all unknown. 

However, there are some interval estimates 

Nkibbb ikikik ,,1,, K=≤≤  (18) 
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with the known upper and lower bounds. This implies that B  in (16) may be ill-
conditioned or even singular, in general. Hence its rank satisfies 

.rank NB ≤  

Suppose ,}{ )(
∞∈li

nv  where ∞l  denotes the space of all bounded scalar 

sequences }{ nx  having the norm .||sup
0

∞<=
∞<≤

∞ n
n

xx  Thus,  

,,,1ε|| )( Niv i
i

n K=∀∞<≤  (19) 

where iε s are constant. We assume that they are unknown, and it is essential. 

Let TNyyy ],,[ )(0)1(00 K=  denote the desired output vector whose 
components satisfy 

.0|||| )(0)1(0 ≠++ Nyy K  
The problem is to design an adaptive controller of the form 

),,,( 0
1 yyuUu nnnn =+  (20) 

to be able to guarantee the boundedness of all signals in the closed-loop system 
(16), (20), i.e., 

∞<+
∞→

||)||||(||suplim nn
n

yu  (21) 

provided that the assumptions (18) and (19) hold. In the expression (20), 
NNNN

nU IRIRIRIR: →××  represents a time-varying linear operator defined 
later. 
 
MAIN RESULTS 
 

The convergence conditions for the learning algorithm in neural network 
model. The global stochastic convergence analysis of the gradient learning 
algorithm (13) (for an arbitrary )0(w ) is based on employing the fundamental 
convergence conditions established in the following Key Technical Lemma which 
is the slightly reformulated Theorem 3 of [32].  

Key Technical Lemma. Let V(w) be the so-called Lyapunov function to be 
satisfy the following properties: 

,if0)(andif0)( ∗∗ ∉>∈= WwwVWwwV  (22) 

and  

||||||)()(|| wwLwwV ′′−′≤′∇−′∇  (23) 

with the Lipschitz constant .0>L  Define the scalar variable 

)},({)()( wxQEwVwH w
T

w ∇∇=  (24) 

 L.S. Zhiteckii, S.A. Nikolaienko, K.Yu. Solovchuk, 2015 
ISSN 0452-9910. Кибернетика и вычисл. техника. 2015. Вып. 181 



 

 53 

and denote  

))}(,({))((:)( nwxQEnwVwH w
T

wn ∇∇= . 

Suppose: 
(i) )),1((θ)( −≥ nwVwH nn  ,0>θn  

(ii) )),((τ}||))(,({|| 2 nwVnwxQE nw ≤∇  

.0τ ≥n  
Introduce the additional variable  

).2τ)(ηθ)((ην nnn nLn −=  (25) 

Then the algorithm (13) yields 0lim =∞→ nn V  a.s. provided that 

∞<)}0({wE  and  

,1ν0 ≤≤ n  (26) 

,
0

∑
∞

=
∞=

n
nv  (27) 

i.e., the limit 

0lim =
∞→

n
n

V  (28) 

will be achieved with probability 1.     n 
Related result followed from the Theorem 3′ of [32] is. 
Corollary. Under the conditions of the Key Technical Lemma, if 

constθθ =≡n  and const,ττ =≡n  and const,η)(η =≡n  then 0 →
∞→nnV  a.s. 

provided that  

)θε0(τ/)εθ(2η0 <<−≤< L  (29) 

is satisfied.     n 
Consider, first, the case when )(xF  can exactly be approximated by a neural 

network representation for all Xx∈  implying 

).,(NN)( ∗≡ wxxF  (30) 

In this case called in [8, p. 304] as the ideal case, we have 0)( =∗wJ  (by 
virtue of (12), (14)). 

Now, we are able to present the first convergence result summarized in the 
theorem below. 

Theorem 1. Suppose the assumption (30) holds. Then the gradient algorithm 
(13) with a constant learning rate, ,η)(η ≡n  will converge with probability 1 (in 

the sense that 0 →
∞→nnV  a.s.) and  
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0)(lim =∞→ nen    a.s. (31) 

for any initial )0(w  chosen randomly so that ∞<))}0(,({ wxQE  if the conditions 
(29) with θ  and τ  specified by 

,
)},({

||)},({||inf:θ
2

wxQE
wxQEw

Ww

∇
=

∗∉
 (32) 

)},({
}||),({||sup:τ

2

wxQE
wxQE w

Ww

∇
=

∗∉
 (33) 

are satisfied. 
Proof. Set  

)}.,({)( wxQEwV =  (34) 

Then condition (22) and (23) can be shown to be valid. This indicates that 
)(wV  of the form (34) may be taken as the Lyapunov function. By virtue of (24) 

such a choice of )(wV  gives .||)},({||)( 2wxQEwH w∇=  Putting θθ ≡n  and 

ττ ≡n  with τandθ  determined by (32) and (33), respectively, one can conclude 

that the conditions (i), (ii) of the Key Technical Lemma are satisfied. Applying its 
Corollary it proves that 0lim =∞→ nn V with probability 1. 

Due to the definition (34) of )(wV  together with the assumption (30), result 
(31) follows.     n 

Now, consider general case, where )(xF  cannot exactly be approximated by 

),(NN wx  (as in (30)). Obviously, in this case, ,0),(inf ≡/∗wxQ
w

 and the choice of 

a constant learning rate, ,η)(η =n  is not appropriate [8]. 
The convergence results are established in the follow theorem. 
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Theorem 2. Subject to the conditions  

,)(η)a(
0

∑
∞

=
∞=

n
n   ∑

∞

=
∞<

0

2 ,)(η)b(
n

n  (35) 

the gradient algorithm (13) yields 
))},({inf))}(,({lim wxQEnwxQE

wn
=

∞→
  a.s. 

provided that 0>θ  with θ  determined by (32). 
Proof. Setting  

)},({inf))}(,({ wxQEnwxQEV
w

n −=  

it can show that the requirements (22) and (23) will be satisfied: ,0)( =∗wV  and 

0)( >wV  for .∗≠ ww  Since 0||}),({|| 2 >∇ wxQE w  for ,∗= ww  it follows that 

condition (ii) of the Key Technical Lemma assumes ∞→nτ  as .)( ∗→ wnw   
Suppose (ii) is not satisfied. Then, there is a finite τ  such that  

))((τ||}),({|| 2 nwVwxQE nw ≤∇  with .∞<τ≤τn  (36) 

Since τn is assumed to be finite, there exists a finite 0n  such that requirement 
(27) will be satisfied for all sufficiently large 0nn ≥  provided that (i) takes place 
with 0θθ >≥n  and ∞<)}({ 0nwE  and the condition (b) of (35) is satisfied (due to 
the fact that (b) means 0)(η →n  as ).∞→n  

Further, if the assumption ∞<≤ ττn  holds then the series  

∑
∞

= 0

θη
nn

nn  with 0θθ >≥n  

diverges whereas the series  

∑
∞

=
−

0

2/τ)(η
nn

nnL  

converges (because of the validity of (a)). This gives that (27) takes also place. 
Since ,0θ >  all the conditions of Key Technical Lemma are satisfied for 

.0nn ≥  By this Lemma, 0lim =∞→ nn V  a.s. Therefore, ∞ →
∞→nnτ  with 

probability 1. But this contradicts the assumption that ∞<≤ ττn  (see (36)). 
Hence, this assumption is false. This fact proves the validity of result given in 
theorem.     n 

Remark 1. Setting  

))}(,({||))}(,({||:θ 2 nwxQEnwxQEwn ∇= , 

))}(,({}||))(,({||:τ 2 nwxQEnwxQE wn ∇=  
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it can be concluded that, under the condition of the Theorem 2, the following 
features are observed: ,0θθ >>n  ∞<< ττn  for all .n  

Remark 2. The conditions established in the theorem 1 and 2 are sufficient to 
guarantee the global convergence of (13) (for any ))0(w  with probability 1 both in 
ideal and non-ideal cases. Under these conditions, the requirement (15) in which  

))}(,({))(( nwxQEnwJ ≡  

will obviously be satisfied (final result). Again, the essential feature of this result is 
that these convergence properties can be achieved without adding penalty term to 

)),(,( nwxQ  as in [17]. 
Of course, the calculation of θ  and τ  for choosing the suitable constant 

learning rate, ,η according to (32), (33) seems to be hard. Meanwhile, η may be 
replaced by the time-varying η(n) satisfying the requirements (29) if necessary. 
Note that they are usual in the stochastic learning theory [1]. 

Adaptive control of the plant (16) with an arbitrary .B  Basic idea is the 
transaction from the adaptive identification of the true plant having the singular 
transfer matrix B  to the adaptive identification of a fictitious plant with the 
nonsingular transfer matrix of the form 

,δ~
0IBB +=  (37) 

where I  denotes the identity matrix and 0δ  is a fixed quantity. 

Although B~  as well as B  remain unknown, the requirement 

0~det ≠B  (38) 

can always be satisfied by the suitable choice of 0δ  in (37). In fact, each ith 
eigenvalue )(λ Bi  of B  lies in one of the N  closed regions of the complex z-plane 
consisting of all the Gerŝgorin discs [33, p. 146] 

.,,1,||||
1

Nibbz
N

ik
k

ikii K=≤− ∑
≠
=

 (39) 

Since, at least, one of the eigenvalues )(λ Bi  is equal to zero (due to the 
singularity of ),B  by virtue of (8) there are the numbers 

,||:β,||:β
1

)(

1

)( ∑∑
≠
=

≠
=

+=−=
N

ik
k

ikii
iN

ik
k

ikii
i bbbb  (40) 
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such that if  

0|||| 1 ≠++ iNi bb K  (41) 

then either 0β )( ≤i  but 0β
)(

>
i

 or 0β )( <i  but .0β
)(

≥
i

 These numbers define the 

intersection points of  the ith Gerŝgorin disc with the real axis of the complex z-

plane as show in Figs 1 and 2, left. In both cases, 0ββ
)()( ≤

ii  if (11) is satisfied 

because )(β i and 
)(

β
i

 cannot have the same sign. 

 

Fig. 1. The Gerŝgorin discs for N=2 in the case |β||β|
)1()2( <  

 

Fig. 2. The Gerŝgorin discs for N=2 in the case |β||β| )1()2(
<  

 
Denote 

}β,,βmax{:β},β,,βmin{:β
)()1()()1( NN KK ==  (42) 

and consider the following cases: (a) |;β||β| <  (b) |β||β| >  (The case when 

|β||β| =  can be combined with any two cases.) In order to go to the transfer matrix 

B~ of the fictitious plant having the form (37) in the case (a), it is sufficient to shift 
the Gerŝgorin disc (39) right taking 

|,β|δ0 >  (43) 
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as shown in Fig. 1, right. In the case (b), the discs (39) need to be shifted left 
according to 

.|β|δ0 −<  (44) 

See Fig. 1, right. In both cases, the nonsingularity of B~  is guaranteed. 
Nevertheless, the conditions (43) and (44) cannot be satisfied, as yet. In fact, the 

numbers β  and β  given by the expressions (42) depend of )(β i  and sβ )(i  defined 

by (40). But they are unknown because sikb  are all unknown. 
To choose a number 0δ  satisfying (38), we propose the following actions. 
Define 

|},|,|max{|:β
1

)(
min ik

N

ik
k

ikii
i bbb ∑

≠
=

−=  (45) 

|},|,|max{|:β
1

)(
max ik

N

ik
k

ikii
i

bbb ∑
≠
=

+=  (46) 

minimizing and maximizing the right side of (40) for )(β i  and ,β
)(i

 respectively in 

].,[ ikikik bbb ∈  
Now, introduce such quantities: 

}.β,,βmax{:β

},β,,βmin{:β

)(
max

)1(
maxmax

)(
min

)1(
minmin

N

N

K

K

=

=
 (47) 

Then 0δ  has to satisfy the conditions 

.|β||β|forβδ

|,β||β|forβδ

maxminmax0

maxminmin0

>−<

<−>
 (48) 

It can be clarified that if (48) together with (45)–(47) will be satisfied then the 
condition (38) will without fail be ensured. 

After determining the number )δ( 0  we able to proceed to the consideration of 

the fictitious plant. Since the input variables )()1( ,, N
nn uu K  and the disturbances 

)()1( ,, N
nn vv K of both true plant and fictitious plant are the same, this feature allows 

to describe our fictitious plant by the equation 

,~~
nnn vuBy +=  (49) 

similar to (1). In this equation, TN
nnn yyy ]~,,~[~ )()1( K=  denotes the output vector of 

the fictitious plant. 
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It is interesting that the components of ny~  can be measured while the 
components of nv  in (49) remain unmeasurable. In fact, substituting (37) into (49) 
due to (16) we produce 

.δ~
0 nnn uyy +=  (50) 

It is seen from (50) that ny~  can always be found indirectly having nu  and ny  
to be measured. 

Now, our problem reduces to the problem of adaptive control applicable to the 
fictitious plant (49) with the unknown transfer matrix B~  in the presence of arbitrary 

bounded disturbances )1()1( ,, nn vv K  whose bounds, iε s, are also unknown. As in 
[4, item 4.2.3], the adaptive control law is designed in the from 

,~~ 1
1 nnnn eBuu −

+ +=  (51) 

where instead of the current estimate nB  of B~  is exploited where as the error 
vector  

nn yye −= 0  
is replaced by 

.~~ 0
nn yye −=  (52) 

with ny~  given by the expression (50). 

The adaptive identification algorithm used to determine the estimates nB~  may 
be taken as 

,,,1,~sign
1

)ε,~(
γ~~ )(*

2

)(
1

)*(
)()(

1
)( Nieu

u

ef
bb i

nn
n

i
n

i
ni

n
i

n
i

n K=∇
∇+

−= −
−  (53) 

which is similar to that in [4, item 4.2.3]. In this algorithm, the following notations 
are introduced )],(

~
,),(

~
[

~
1

)( nbnbb iNi
Ti

n K=  .: 1−−=∇ nnn uuu  







−

≤
=

otherwiseε||

,ε||if0
)ε,(

e

e
ef  (54) 

represents the dead-zone function depending on 

,
~~~ T)(

1
)()*(

n
i

n
i

n
i

n ubye ∇−∇= −  (55) 

which is the ith component of ,]~,,~[~ )*()1*(* TN
nnn eee K=  and on the past estimate 

)(
1ε i

n−  of the unknown )(ε i  found at the previous (n-1)th step. )(γ i
n  is the coefficient 

chosen as 

2γγγ0 <′′≤≤′< n  (56) 

to ensure .0~det ≠nB  

The algorithm for estimating sε )(i
n  is specified by 
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Remark 3. The dead-zone function )ε,(ef  depicted in Fig. 3 differs from the 
dead-zone function utilized in the standard adaptation algorithms similar to (53) in 
that it is nonnegative and also its size is time-varying variable determined by the 
past estimate of the unknown bound on the disturbance. 

 
Fig. 3. The dead-zone function of the form (54) 

The asymptotic properties of the adaptive control algorithm designed above 
are established in the following theorem. 

Theorem 3. Let the assumptions (18), (19) and (41) be valid. Consider the 
adaptive feedback control system containing the plant (16), the controller (51), (52) 

together with the adaptation algorithm (53) to (57). Put 0ε )(
0 =i  for all Ni ,,1 K=  

and choose any initial estimate IBB 000 δ~
+=  from the conditions .)0( ikikik bbb ≤≤  

Then: 
(i) the sequence ,,~,~:}~{ 21 KBBBn =  caused by (53)–(56) converges, 

i.e., ;~~lim ∞
∞→

= BBn
n

 

(ii) the sequence K,ε,ε}ε{ )(
1

)(
0

)( iii
n =  caused by (57) is nondecreasing 

and is convergent, i.e., 

,ε}ε{lim )()( ii
n

n
∞

∞→
=     ;,,1 Ni K=  

(iii) the requirement (21) is satisfied.  
Proof. The validity of (i) and (ii) follows immediately from the results which 

can be found in [4, subsect. 4.2]. It is based on exploiting the fact that 

),()()( )(
ε

)(
~

)( nVnVnV ii
b

i +=  

with 
2)()()(

~ ||~~||:)( i
n

ii
b

bbnV −=  and ,||εε2||:)( 2)()(
ε

i
n

i nV −=  

where ,]~,,~[~
1

)( T
iNi

i bbb K=  is the Lyapunov function of the algorithm (53) to (57). 

The proof of (iii) is based on the boundedness property for }~{ )(i
ny  established 

in [4, subsect. 4.2]. Due to this property it can be written 
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.||~||suplim ∞<
∞→

n
n

y  (58) 

 
Substituting (49) into (58) gives 

.)~(suplim ∞<+
∞→

nn
n

vuB  (59) 

Since ,}{
43421

lLl

N
nv ∞∞ ××∈  and B~  is nonsingular from (59) it can be 

concluded that .}{
43421

lLl

N
nu ∞∞ ××∈  By virtue of the boundedness of }{ nv  it yields 

the boundedness of }.{ ny  Finally, this fact proves the validity of (iii).     n 
 
CONCLUSIONS 
 

The Lyapunov function approach is the suitable tool for analyzing the 
asymptotic behavior both of the gradient learning algorithm in the neural network 
identification systems and of the adaptive gradient algorithm in the certain closed-
loop control systems. 

Using the approach above mentioned, the two groups of global sufficient 
conditions which guarantee that the online gradient learning algorithm in neural 
network model for the identification of uncertain nonlinear systems acting in the 
stochastic environment will converge with probability 1. The first group of these 
conditions define the requirements under which this algorithm will be convergent 
a.s. with a constant learning rate. Such an asymptotic property holds in the ideal 
case where the nonlinearity to be identified can exactly be described by a neural 
network model. The second group of convergence conditions shows that this 
property can also be achieved in non-ideal case. Note that adding a penalty term to 
the current error function is indeed not necessary to guarantee this property. 

It is established that in a worst case where the matrix gain of multivariable 
plant to be controlled is unknown and may be singular, and the bounds on the 
arbitrary unmeasurable disturbances remain unknown, the convergence of the 
gradient adaptation algorithm and the boundedness of all signals in the adaptive 
closed-loop system can be guaranteed. 
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UDC 681.5 

ADAPTATION AND LEARNING IN SOME CLASSES OF 
IDENTIFICATION AND CONTROL SYSTEMS 

L.S. Zhiteckii, S.A. Nikolaienko, K.Yu. Solovchuk  
International Research and Training Center for Information Technologies and 
Systems of the National Academy of Science of Ukraine and Ministry of Education and 
Sciences of Ukraine, Kiev, Ukraine 

Introduction. The paper deals with studying the asymptotical properties of 
the standard discrete-time gradient online learning algorithm in the two-layer 
neural network model of the uncertain nonlinear system to be identified. Also, the 
design of the discrete-time adaptive closed-loop system containing the linear 
multivariable memoryless plant with possibly singular but unknown matrix gain in 
the presence of unmeasurable bounded disturbances having the unknown bounds 
are addressed in this paper. It is assumed that the learning process in the neural 
network model is implemented in the stochastic environment whereas the 
adaptation of the plant model in the control system is based on the non-stochastic 
description of the external environment. 

The purpose of the paper is to establish the global convergence conditions of 
the gradient online learning algorithm in the neural network model by utilizing the 
probabilistic asymptotic analysis and to derive the convergent adaptive control 
algorithm guaranteeing the boundedness of the signals in the closed-loop system 
which contains the multivariable memoryless plant with an arbitrary matrix gain in 
the presence of unmeasurable disturbances whose bounds are unknown. 

Results. The Lyapunov function approach as the suitable tool for analyzing 
the asymptotic behavior both of the gradient learning algorithm in the neural 
network identification systems and of the adaptive gradient algorithm in the certain 
closed-loop control systems is utilized. Within this approach, the two groups of 
global sufficient conditions guaranteeing the convergence of the online gradient 
learning algorithm in neural network model with probability 1 are obtained. The 
first group of these conditions defines the requirements under which this algorithm 
will be convergent almost sure with a constant learning rate. Such an asymptotic 
property holds in the ideal case where the nonlinearity to be identified can exactly 
be described by a neural network model. The second group of convergence 
conditions shows that this property can also be achieved in non-ideal case. It turns 
out that adding a penalty term to the current error function is indeed not necessary 
to guarantee this property. It is established that in a worst case where the matrix 
gain of multivariable plant is unknown and may be singular, and the bounds on the 
arbitrary unmeasurable disturbances remain unknown, the convergence of the 
gradient adaptation algorithm and the boundedness of all signals in the adaptive 
closed-loop system can be ensured. 

Conclusions. In order to guarantee the global convergence of the online 
learning algorithm in the neural network identification system with probability 1, 

 L.S. Zhiteckii, S.A. Nikolaienko, K.Yu. Solovchuk, 2015 
ISSN 0452-9910. Кибернетика и вычисл. техника. 2015. Вып. 181 



 

 64 

the certain conditions should be satisfied. Also the boundedness of all signals in the 
closed-loop adaptive control system containing the multivariable memoryless plant 
whose matrix gain is unknown and possibly singular can be achieved even if the 
bounds on the unmeasurable disturbances are unknown. 

Keywords: neural network, gradient learning algorithm, convergence, 
multivariable memoryless plant, adaptive control algorithm, boundedness of the 
signals. 

 
1. Tsypkin Ya.Z. Adaptation and Learning in Automatic Systems. N.Y.: Academic 

Press, 1971. 
2. Tsypkin Ya.Z. Foundation of the Theory of Learning Systems. N.Y.: Academic 

Press, 1973. 
3. Kuntsevich V.M. Control under Uncertainty Conditions: Guaranteed Results in 

Control and Identification Problems. Kiev: Nauk. dumka, 2006. (in Russian).  
4. Zhiteckii L.S. and Skurikhin V.I. Adaptive Control Systems with Parametric and 

Nonparametric Uncertainties. Kiev: Nauk. dumka, 2010. (in Russian).  
5. Suykens J. and Moor B.D. Nonlinear system identification using multilayer neural 

networks: some ideas for initial weights, number of hidden neurons and error 
criteria. In Proc. 12nd IFAC World Congress, 1993, vol. 3, pp. 49–52. 

6. Kosmatopoulos E.S., Polycarpou M.M., Christodoulou M.A. and Ioannou P.A. 
High-order neural network structures for identification of dynamical systems. IEEE 
Trans. on Neural Networks, 1995, vol. 6, pp. 422–431. 

7. Levin A.U. and Narendra K.S. Recursive identification using feedforward neural 
networks. Int. J. Control, 1995, vol. 61, pp. 533–547. 

8. Tsypkin Ya.Z., Mason J.D., Avedyan E.D., Warwick K. and Levin I.K. Neural 
networks for identification of nonlinear systems under random piecewise 
polynomial disturbances. IEEE Trans. on Neural Networks, 1999, vol. 10, pp. 303–
311. 

9. Behera L., Kumar S., and Patnaik A. On adaptive learning rate that guarantees 
convergence in feedforward networks. IEEE Trans. on Neural Networks, 2006, vol. 
17, pp. 1116–1125. 

10. White H. Some asymptotic results for learning in single hidden-layer neural 
network models. J. Amer. Statist. Assoc., 1987, vol. 84, pp. 117–134. 

11. Kuan C M. and Hornik K. Convergence of learning algorithms with constant 
learning rates. IEEE Trans. on Neural Networks, 1991, vol. 2, pp. 484 – 489. 

12. Luo Z. On the convergence of the LMS algorithm with adaptive learning rate for 
linear feedforward networks. Neural Comput., 1991, vol. 3, pp. 226–245. 

13. Finnoff W. Diffusion approximations for the constant learning rate backpropagation 
algorithm and resistance to local minima. Neural Comput., 1994, vol. 6, pp. 285– 
295. 

14. Gaivoronski A.A. Convergence properties of backpropagation for neural nets via 
theory of stochastic gradient methods. Optim. Methods Software, 1994, vol. 4, pp. 
117–134. 

15. Fine T.L. and Mukherjee S. Parameter convergence and learning curves for neural 
networks. Neural Comput., 1999, vol. 11, pp. 749–769. 

16. Tadic V. and Stankovic S. Learning in neural networks by normalized stochastic 
gradient algorithm: Local convergence. In Proc. 5th Seminar Neural Netw. Appl. 
Electr. Eng., 2000, pp. 11–17. 

 L.S. Zhiteckii, S.A. Nikolaienko, K.Yu. Solovchuk, 2015 
ISSN 0452-9910. Кибернетика и вычисл. техника. 2015. Вып. 181 



 

 65 

17. Zhang H., Wu W., Liu F. and Yao M. Boundedness and convergence of online 
gradient method with penalty for feedforward neural networks. IEEE Trans. on 
Neural Networks, 2009, vol. 20, pp. 1050–1054. 

18. Mangasarian O.L. and Solodov M.V. Serial and parallel backpropagation 
convergence via nonmonotone perturbed minimization. Optim. Methods Software, 
1994, pp. 103–106. 

19. Wu W., Feng G. and Li X. Training multilayer perceptrons via minimization of 
ridge functions. Advances in Comput. Mathematics, vol. 17, pp. 331–347, 2002. 

20. Zhang N., Wu W. and Zheng G. Convergence of gradient method with momentum 
for two-layer feedforward neural networks. IEEE Trans. on Neural Networks, 2006, 
vol. 17, pp. 522–525. 

21. Wu W., Feng G., Li X and Xu Y. Deterministic convergence of an online gradient 
method for BP neural networks. IEEE Trans. on Neural Networks, 2005, vol. 16, 
pp. 1–9. 

22. Xu Z.B., Zhang R. and Jing W.F. When does online BP training converge? IEEE 
Trans. on Neural Networks, 2009, vol. 20, pp. 1529–1539. 

23. Shao H., Wu W. and Liu L. Convergence and monotonicity of an online gradient 
method with penalty for neural networks. WSEAS Trans. Math., 2007, vol. 6, pp. 
469–476. 

24. Ellacott S.W. The numerical analysis approach. In Mathematical Approaches to 
Neural Networks (Taylor J.G. ed; B.V.: Elsevier Science Publisher), 1993, pp. 103–
137. 

25. Skantze F.P., Kojic A., Loh A.P. and Annaswamy A.M. Adaptive estimation of 
discrete time systems with nonlinear parameterization. Automatica, 2000, vol. 36, 
pp. 1879–1887. 

26. Loeve M. Probability Theory. N.Y.: Springer-Verlag, 1963. 
27. Zhiteckii L.S., Azarskov V.N. and Nikolaienko S.A. Convergence of learning 

algorithms in neural networks for adaptive identification of nonlinearly 
parameterized systems. In Proc. 16th IFAC Symposium on System Identification, 
2012, pp. 1593–1598. 

28. Skurikhin V.I., Gritsenko V.I., Zhiteckii L.S. and Solovchuk K.Yu. Generalized 
inverse operator method in the problem of optimal controlling linear interconnected  
static plants. Dopovidi Natsionalnoi Akademii Nauk Ukrainy, 2014, no. 8, pp. 57–
66. (in Russian).  

29. Fomin V.N., Fradkov A.L. and Yakubovich V.A. Adaptive Control of Dynamic 
Systems. Moscow: Nauka, 1981. (in Russian). 

30. Goodwin G.C. and Sin K.S. Adaptive Filtering, Prediction and Control. Engewood 
Cliffs. NJ.: Prentice-Hall, 1984. 

31. Azarskov V.N., Zhiteckii L.S. and Solovchuk K.Yu. Adaptive robust control of 
multivariable static plants with possibly singular transfer matrix. Electronics and 
Control Systems, 2013, no. 4, pp. 47–53. 

32. Polyak B.T.Convergence and convergence rate of iterative stochastic algorithms, I: 
General case. Autom. Remote Control, 1976, vol. 12, pp. 1858–1868. 

33. Marcus M. and Minc H. A Survey of Matrix Theory and Matrix Inequalities. 
Boston: Allyn & Bacon Inc. 1964. 

 

Получено 06.07.2015 

 L.S. Zhiteckii, S.A. Nikolaienko, K.Yu. Solovchuk, 2015 
ISSN 0452-9910. Кибернетика и вычисл. техника. 2015. Вып. 181 


